

H. Scott Hamlin and Luciana de la Rocha

Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, University Station, Box X, Austin, Texas 78713–8924, U.S.A.

ABSTRACT

In South Texas, brackish groundwater is a potentially important resource for oil field and agricultural uses. However, it is difficult to distinguish and quantify because few direct salinity measurements are available. In this paper, methods are presented for using resistivity logs to estimate groundwater salinity and to map brackish groundwater resources in the Carrizo-Wilcox Aquifer in South Texas. Electric logs were used to correlate and map stratigraphy and to estimate groundwater salinity. Salinity estimations were based on two methods: (1) empirical relationship between deep resistivity (\mathbf{R}_0) and formation water salinity; and (2) calculation of formation water resistivity (R_w) using a modified version of the Archie equation. Both methods provide cutoff values of R_0 to distinguish broad categories of groundwater salinity: fresh (<1000 mg/L total dissolved solids [TDS]), slightly saline (1000–3000 mg/L TDS), moderately saline (3000–10,000 mg/L TDS), and very saline (>10,000 mg/L TDS). Brackish groundwater includes both slightly saline and moderately saline waters. Each significant (>10 ft thick) sand in the Carrizo-Wilcox Aquifer was assigned to one of these categories, and then cross sections and thickness maps were constructed to locate and quantify the resource. The Carrizo-upper Wilcox interval contains most of the fresh groundwater in the aquifer, whereas the lower Wilcox interval contains mainly brackish and saline groundwater. Within Carrizo-upper Wilcox sands, fresh groundwater grades downdip into brackish groundwater without intervening flow barriers. Brackish groundwater in lower Wilcox sands, however, is hydraulically separated from fresh groundwater in overlying sands. Therefore, the lower Wilcox interval is the most favorable target for brackish groundwater production without impacting fresh groundwater resources. Lower Wilcox brackish groundwater sands are thickest in the north and northeast parts of the study area. The lower Wilcox interval contains roughly 423 million acre-ft of brackish groundwater in place in the confined part of the aquifer in South Texas.

INTRODUCTION

Brackish groundwater is becoming increasingly important as fresh groundwater resources diminish. Brackish groundwater is defined as water containing between 1000 mg/L and 10,000 mg/ L total dissolved solids (TDS) (LBG-Guyton Associates, 2003). The Texas Water Development Board divides brackish groundwater into two categories: slightly saline (1000–3000 mg/L TDS) and moderately saline (3000–10,000 mg/L TDS) (LBG-Guyton Associates, 2003). Brackish groundwater is usable with minimal treatment for many purposes in agricultural and oil field operations and may be better suited than sea water (35,000 mg/L TDS) for desalination. In South Texas, brackish groundwater in the Carrizo-Wilcox Aquifer is a potential source of water for

Copyright © 2015. Gulf Coast Association of Geological Societies. All rights reserved.

Manuscript received March 23, 2015; revised manuscript received June 14, 2015; manuscript accepted June 22, 2015.

GCAGS Journal, v. 4 (2015), p. 109–131.

hydraulic fracturing in the Eagle Ford Shale play (Scanlon et al., 2014). Brackish groundwater, however, is difficult to distinguish and quantify because few direct salinity measurements are available. Most chemical analyses of formation water samples are either from freshwater aquifers or from oil field brines. In this study, electric logs were used to quantify and map brackish groundwater in the Carrizo-Wilcox Aquifer in South Texas (Fig. 1). Water sample analyses provide only point-sourced data, whereas electric logs provide continuous vertical records of the electrical properties of both rocks and fluids in wells.

GEOLOGIC SETTING

The Wilcox Group is a thick succession of fluvial-deltaic sandstone and shale that was deposited during the Late Paleocene and Early Eocene in the first major Cenozoic progradational episode into the Gulf of Mexico Basin (Fisher and McGowen, 1967; Galloway et al., 2000, 2011). The onshore Texas Wilcox Group is divided into three intervals (Fig. 2). Lower and middle Wilcox sandstones are thickest along the upper Texas coast (Houston Embayment), whereas upper Wilcox sandstones are thickest in

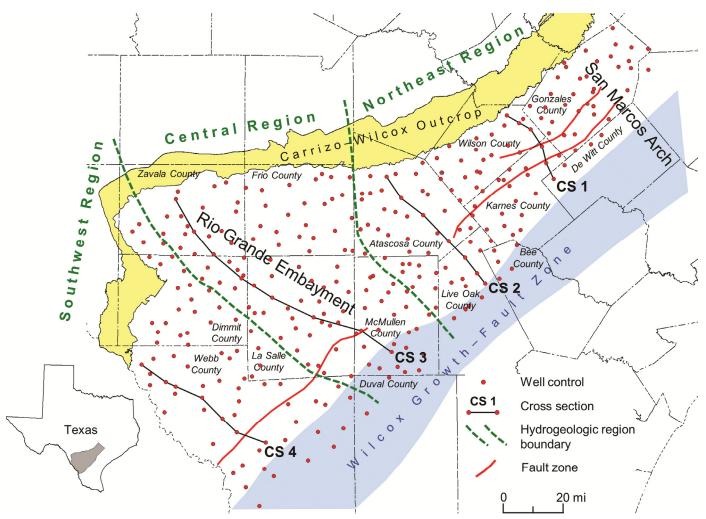


Figure 1. Location of study area showing electric log well control, cross-section lines, and Carrizo-Wilcox outcrop. The Wilcox growth-fault zone and selected updip fault zones are also shown (Ewing, 1990). The area was divided into hydrogeologic regions (Hamlin, 1988) for separate R₀/TDS regressions.

South Texas (Rio Grande Embayment) (Bebout et al., 1982; Xue and Galloway, 1993, 1995). In South Texas the Carrizo Formation is the updip equivalent of the upper Wilcox interval (Hargis, 1985, 1986). Carrizo fluvial facies updip are contiguous with upper Wilcox deltaic facies downdip (Hamlin, 1988). The middle and lower Wilcox intervals were deposited in a variety of coastal plain and marine environments and are generally less sandy than the Carrizo–upper Wilcox interval. The study area covers the Rio Grande Embayment and the southern flank of the San Marcos Arch, updip from the Wilcox growth-fault zone (Fig. 1). The Wilcox Group dips to the southeast at 50 to 150 ft/mi from outcrop to the Wilcox growth-fault zone.

Carrizo-Wilcox sands are one of the most extensive and productive aquifers in Texas. In South Texas almost the entire fresh groundwater resource is located in Carrizo-upper Wilcox sands. Fresh groundwater extends as far as 50 mi downdip from the outcrop to as deep as 5000 ft below sea level (Klemt et al., 1976; Hamlin, 1988). Middle and lower Wilcox sands contain primarily brackish and saline groundwater. The middle Wilcox interval is shale-dominated and generally forms an aquitard between the lower Wilcox interval and the Carrizo-upper Wilcox interval (Fig. 2). In this study, middle and lower Wilcox sands were mapped as one undifferentiated unit, which will be referred to as the lower Wilcox interval. The Carrizo-Wilcox Aquifer is variably consolidated and includes sands and sandstones, both of which are referred to as sands in this paper.

METHODS

Electric logs from 327 wells were used to correlate and map stratigraphy and to estimate groundwater salinity (Fig. 1). Digital logs were used to display lithology and groundwater salinity on cross sections. Petra software (IHS, Inc.) was used for data management, interpretation, and visualization. Stratigraphic correlations were guided by type logs published in regional studies (Bebout et al., 1982; Hargis, 1986; Hamlin, 1988). The depositional framework is also based on previous regional studies (Hargis, 1985, 1986; Fisher and McGowen, 1967; Bebout et al., 1982; Hamlin, 1988; Xue and Galloway, 1993, 1995). In Gulf Coast Tertiary sand/shale sequences, lithologies can be distinguished with confidence on electric logs (spontaneous potential [SP] and resistivity curves) (Fig. 2). Standard subsurface mapping techniques were applied to construct net sand thickness maps separately for sands containing fresh groundwater and those containing brackish groundwater. Depth maps to important salinity boundaries were also constructed. Net sand thickness multiplied by estimated porosity allowed volumetric quantification of groundwater in place.

Groundwater salinity estimations are based on two methods: (1) empirical relationship between the resistivity of a water-filled formation (R_0) and formation water salinity; and (2) calculation of formation water resistivity (R_w) using a modified version of the Archie equation (Jones and Buford, 1951; Estepp, 1998).

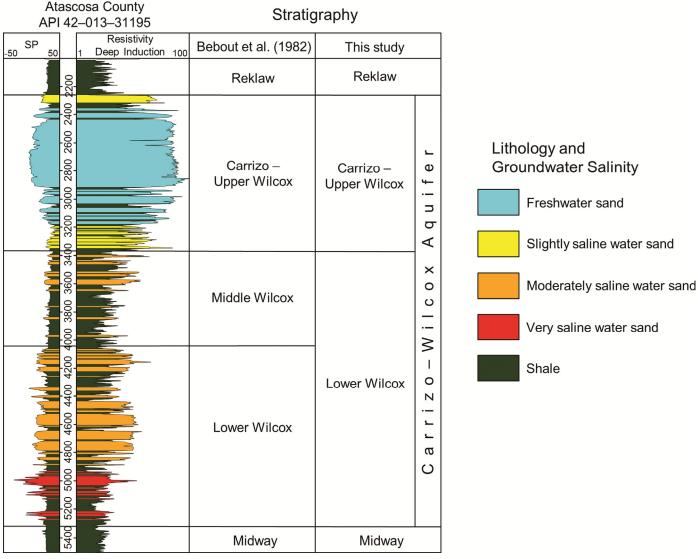


Figure 2. Typical electric log showing spontaneous potential (SP) and resistivity curves through the Carrizo-Wilcox interval. In this study, the middle and lower Wilcox intervals were undifferentiated. Both lithology (sand/shale) and groundwater salinity were interpreted from the electric log (see text for details).

The R₀ method involves correlating deep resistivity (long normal or deep induction) with chemical analyses of groundwater samples from the same zone (Fogg and Blanchard, 1986; Hamlin et al., 1988; Collier, 1993; Estepp, 1998). The deep resistivity curve is used to minimize the effects of mud filtrate invasion. Deep resistivity is assumed to be approximately equal to true formation resistivity (R_t) . Bed thickness also affects the deep resistivity. For beds thinner than about twice the electrode spacing, the deep resistivity does not equal Rt (Jones and Buford, 1951). Therefore, only sand layers greater than 10 ft thick are included in volume calculations. Where water saturation is 100% (no hydrocarbons), the deep resistivity is affected primarily by formation water salinity and hydrochemical composition, temperature, porosity, and lithology, and can be taken as a proxy for R₀, which is the Rt value of a 100% water wet formation (Jones and Buford, 1951; Turcan, 1962; Alger, 1966). Hydraulic conductivity (permeability) also affects resistivity, and resistivity has been used to map recharge and groundwater flow paths (Fogg et al., 1983; Ayers and Lewis, 1985; Ayers et al., 1986). R₀ is most closely related to groundwater salinity in thick, clay-free sands having similar porosities, depositional facies, geographic area, and depth range. The R_0 method works best in unconsolidated to

semi-consolidated, sand/shale sequences such as the Gulf Coast Tertiary.

To develop R_0 /TDS regressions, TDS values from water well chemical analyses from 166 wells were paired with R_0 measurements in nearby petroleum wells, taking care to identify the same zone in both wells. Median distance between wells in the pairs is 8835 ft (Fig. 3; Appendix). Most of the water wells produce low TDS groundwater from the Carrizo–upper Wilcox interval; the lower Wilcox interval is poorly represented. A small set of lower Wilcox data (9 wells) was obtained from analyses of high TDS formation water produced in petroleum wells (Appendix). Graphing R_0 versus TDS for the entire dataset yielded a coefficient of determination (R^2) of 0.87 (Fig. 4). This relatively good correlation suggests that groundwater salinity is the dominant control on R_0 in shallow (<6000 ft) Carrizo-Wilcox sands in South Texas.

 R_0 /TDS correlations were refined by dividing the study area into three smaller regions, and developing separate R_0 /TDS regressions for each region (Fig. 5). The regions coincide with hydrogeologic zones that have distinct lithologies, depositional facies, hydrochemical facies, and other aquifer properties (Hamlin, 1988) (Fig. 1). R_0 /TDS correlations were used to de-

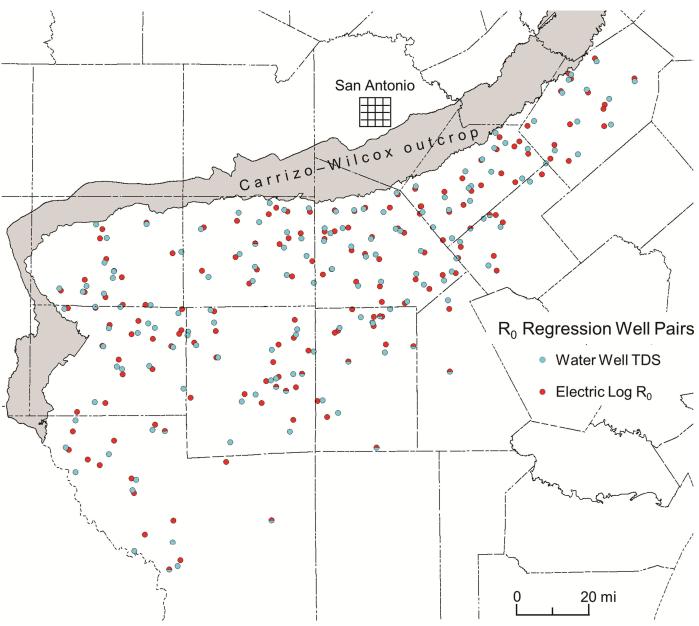


Figure 3. Wells used to develop R_0/TDS regressions. Most TDS data (blue dots) come from water wells, whereas most resistivity data (red dots) come from petroleum wells. A few wells have both data types (red and blue dots).

fine R_0 cutoff values in each region for freshwater (<1000 mg/L TDS), slightly saline water (1000–3000 mg/L TDS), moderately saline water (3000–10,000 mg/L TDS), and very saline water (>10,000 mg/L TDS) (Table 1). Brackish water includes both slightly saline and moderately saline waters.

The R_w method was used to supplement and corroborate the R_0 method, especially in deeper intervals where water well chemical analyses are scarce. Parameters for the R_w equation (Equation 1) are porosity (ϕ) and the cementation exponent (m), which is an empirical parameter related to compaction, cementation, and grain size (Jones and Buford, 1951; Asquith et al., 2004).

$$\mathbf{R}_{\mathbf{w}} = \boldsymbol{\phi}^{\mathbf{m}} \times \mathbf{R}_{\mathbf{0}} \tag{1}$$

Values for ϕ and m are based primarily on previous studies of Wilcox porosity and petrography (Loucks et al., 1986; McBride et al., 1991; Dutton and Loucks, 2014) supported by water sample measurements of R_w from petroleum wells (Gaither, 1986). Ranges of ϕ and m were tested for sensitivity and reasonable outcome. R_w from Equation 1 was corrected to a standard surface temperature and then converted to TDS through a conductivity relationship that is specific to formation and region (Turcan, 1966; Estepp, 1998) (Equations 2 and 3).

$$C_w = 10,000/R_w$$
 (2)

$$TDS = ct \times C_w \tag{3}$$

where C_w is the formation water conductivity and ct is a proportionality constant that was determined by graphing TDS versus C_w , both of which were measured in groundwater samples from the Carrizo-Wilcox Aquifer in South Texas (Fig. 6). The R_w method allows R_0 /TDS cutoffs to be determined independently from water sample analysis (Table 2).

Resistivity cutoffs from the R_0 method (Table 1) were used to estimate groundwater salinity mainly in Carrizo–upper Wilcox sands, whereas cutoffs from the R_w method (Table 2) were used

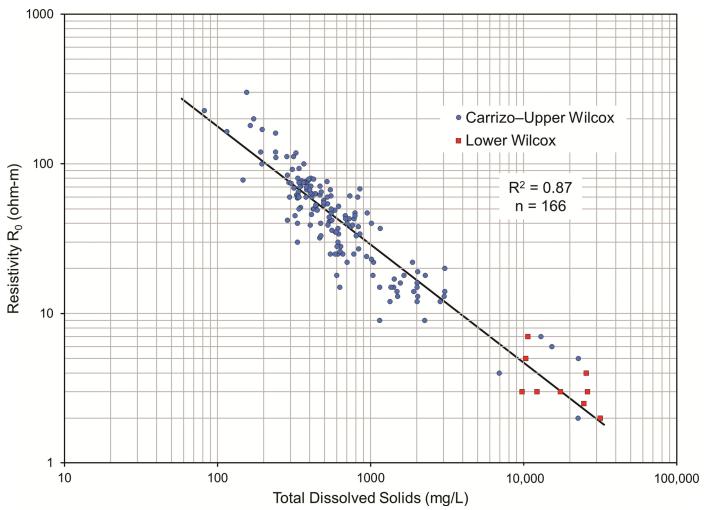


Figure 4. Deep resistivity (proxy for R₀) versus total dissolved solids (TDS) versus for all well pairs in the study area. See Figure 3 for well locations and Appendix for data used to construct graph.

mainly in lower Wilcox sands. For similar groundwater salinities, resistivities in Carrizo-Wilcox sands increase from northeast to southwest (Fig. 5). Reasons for southwest-increasing resistivities have not been documented, but decreasing porosity and permeability are probably important factors. Similar resistivity increases are present in the lower Wilcox interval relative to the Carrizo-upper Wilcox interval. However, in the southwest region (Fig. 1), lithologies and aquifer properties are similar for both the Carrizo-upper Wilcox and the lower Wilcox, and R_0 cutoffs are similar there as well (compare Tables 1 and 2).

RESULTS

Sand distribution and geometry are important aquifer properties, and mapping sand thicknesses is the first step in quantifying groundwater volumes. The Carrizo–upper Wilcox interval ranges from greater than 90% sand near outcrop in the northeastern part of the study area to about 50% sand along the Rio Grande in the southwestern part (Hamlin, 1988). Carrizo–upper Wilcox sand thickens into a large depocenter located south of San Antonio (Fig. 7). Coarse-grained, bed-load fluvial channel systems dominate the Carrizo updip from the sand depocenter (Hamlin, 1988). Along the downdip margin of the study area and in the Wilcox growth-fault zone, the upper Wilcox was deposited in wave-dominated delta and associated barrier/strandplain systems (Fisher, 1969; Edwards, 1980, 1981). Specific depositional environments within the sand depocenter are not well documented but probably comprise bed-load fluvial channel facies interfingering with coalesced delta front and shoreface facies.

The Carrizo-upper Wilcox interval contains fresh or brackish groundwater across most of the study area. The thickest freshwater zones are located in fluvial sands in the north and northeast parts of the study area (Fig. 8). Thickness of freshwater sands decreases abruptly along the downdip margin of the study area, coinciding locally with regional fault zones (Fig. 8). These normal faults are located updip from the Wilcox growthfault zone (Fig. 1). In Gulf Coast Tertiary aquifers, groundwater salinity changes commonly occur near faults and result from the interaction between descending low-TDS meteoric water and expulsing high-TDS deep-basin formation water (Kreitler, 1979; Galloway, 1984; Hamlin, 1988). In Carrizo-upper Wilcox sands, fresh groundwater grades downdip into brackish groundwater. Sands containing brackish groundwater form a strike-aligned trend of maximum thickness near the downdip margin of the study area (Fig. 9).

In South Texas, the lower Wilcox interval is less sandy than the Carrizo-upper Wilcox interval. Percent sand in the lower Wilcox interval generally decreases from 60% sand near the outcrop and in the northeast to less than 10% sand locally in the southwest and downdip. The thickest sands in the lower Wilcox interval are in the northeast on the San Marcos Arch (Fig. 10). In the far northeast, the shale-filled Yoakum Canyon is expressed as a sand-poor, dip-oriented trend (Fig. 10) (Hoyt, 1959; Dingus and Galloway, 1990). In the Rio Grande Embayment, lower Wilcox

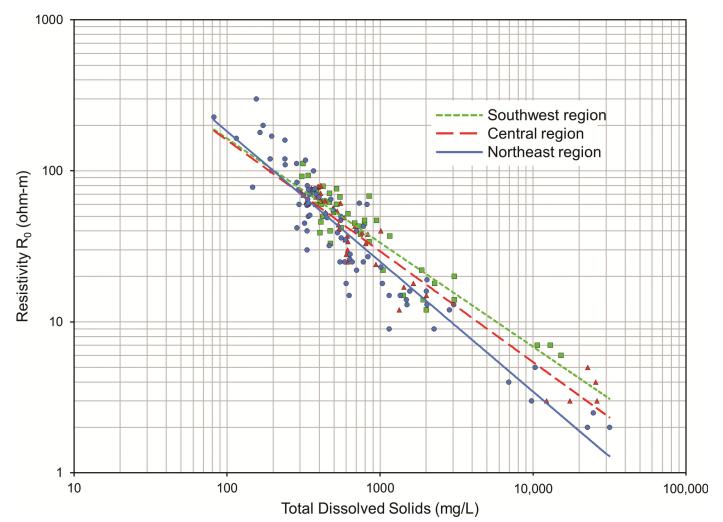


Figure 5. Deep resistivity (proxy for R₀) versus total dissolved solids (TDS) showing separate regressions for each of the three hydrogeologic regions (Fig. 1). See Figure 3 for well locations and Appendix for data used to construct graph.

Region	Freshwater	Slightly Saline Water	Moderately Saline Water	Very Saline Water		
Southwest	> 34	16 – 34	7 – 16	< 7		
Central	> 29	13 – 29	5 – 13	< 5		
Northeast	> 25	10 – 25	4 – 10	< 4		

Table 1. R₀ cutoff values based on the R₀/TDS empirical relationships (Fig. 5).

net sand patterns are strike aligned and decrease updip and downdip from an elongated depocenter (Fig. 10). Fisher and McGowen (1967) interpreted these sand thickness patterns to represent a delta system in the northeast flanked by a barrier-strandplain system to the southwest.

The lower Wilcox interval is dominated by brackish and saline groundwater, although minor fresh groundwater is present locally in outcrop and the shallow subsurface. Lower Wilcox brackish groundwater sands are thickest in the north and northeast (Fig. 11), where they underlie maximum fresh groundwater in the Carrizo-upper Wilcox interval (Figs. 12 and 13). The lower Wilcox interval contains mostly saline groundwater in the southwest (Webb County) and along the downdip margin of the study area (Figs. 14 and 15). Fault-related groundwater mixing probably controls distribution of brackish groundwater in the lower Wilcox interval in the northeast (Fig. 11). In the southwest poor sand development and low rainfall recharge in outcrop are probably the main controls on brackish groundwater distribution (Hamlin, 1988).

Fresh and brackish groundwater intervals extend to greater depths in the Carrizo-Wilcox Aquifer in South Texas than they do in other Texas aquifers (LBG-Guyton Associates, 2003). Base of fresh groundwater ranges from 500 ft below surface near the outcrop to greater than 5000 ft below surface locally downdip (Fig. 16). The base of brackish groundwater ranges from 1000 ft below surface near outcrop to greater than 6500 ft below surface downdip (Fig. 17). The deepest occurrences of both fresh and brackish groundwater are in the Carrizo-upper Wilcox interval.

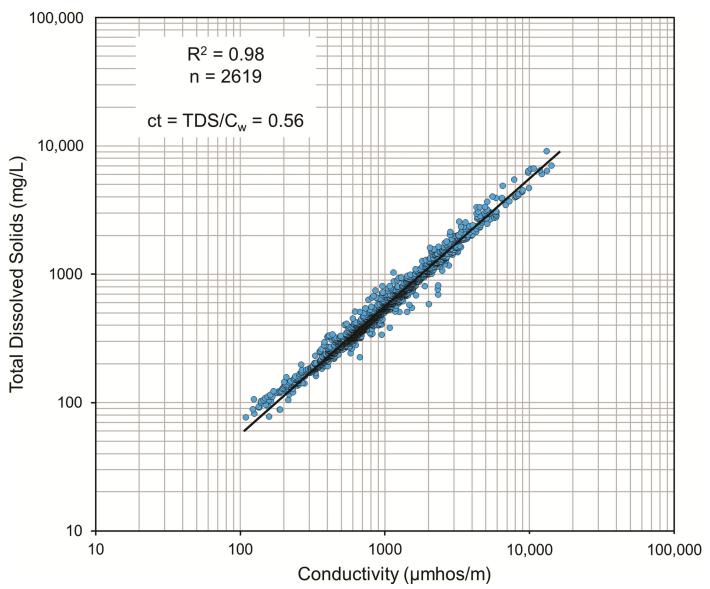


Figure 6. Graph of conductivity (Cw) versus TDS for the study area. Both Cw and TDS were measured in water well samples. Cw and TDS are related by a proportionality constant (ct), which is specific to area and formation. In the South Texas region, however, a single value of ct is valid for the entire Carrizo-Wilcox Aquifer.

Table 2. R₀ cutoff values calculated using the R_w method.

TDS (mg/L)	Depth range (ft)	Temperature (°F)	Porosity (%)	m	ct	R _w	R₀
1000	< 3000	110	30	1.8	0.56	3.78	33
3000	3000 - 6000	158	25	2.1	0.56	0.87	16
10000	4000 - 7000	177	20	2.4	0.56	0.23	11

In the lower Wilcox interval, depth to base of brackish water ranges from 5000 ft in the northeast to 1200 ft in the southwest (Fig. 18).

Hydraulic connectivity between subunits in a heterogeneous aquifer system is an important consideration for developing and managing groundwater resources. Hydraulically separated layers commonly have differing heads and hydrochemical compositions, and one layer might be produced without significantly affecting others (Nativ and Weisbrod, 1994). In the CarrizoWilcox Aquifer, shales and muds are aquitards that vertically separate aquifer sands. In this study, we assume (but do not prove) that the Carrizo–upper Wilcox interval is hydraulically isolated from the lower Wilcox interval by shales in the upper part of the lower Wilcox, although the degree of separation varies (Figs. 12–15). In contrast, within the Carrizo–upper Wilcox interval, fresh groundwater grades downdip into brackish groundwater without intervening flow barriers. Therefore, brackish groundwater volumes in place were calculated separately for the

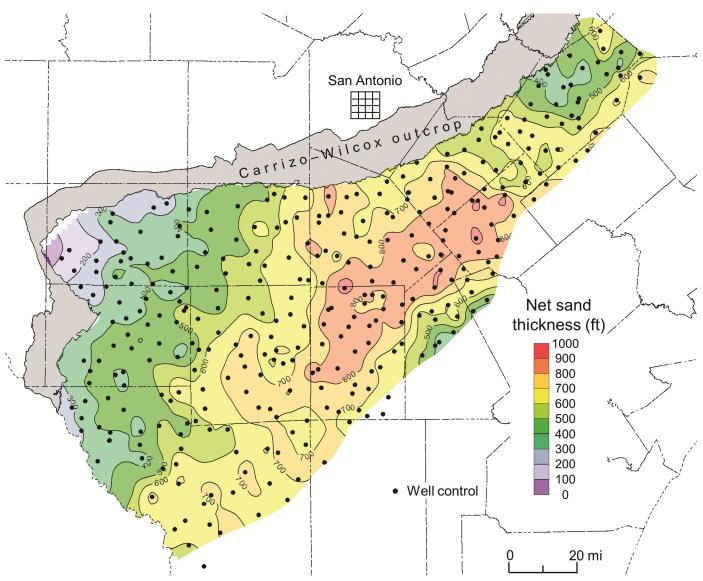


Figure 7. Carrizo-upper Wilcox net sand thickness. Maximum sand thicknesses in the Carrizo-upper Wilcox form a depocenter south of San Antonio.

Carrizo–upper Wilcox interval and the lower Wilcox interval. In South Texas, the lower Wilcox interval is the most favorable target for brackish groundwater production without impacting the fresh groundwater resource in the Carrizo–upper Wilcox interval.

The volume of groundwater in place, although not completely producible, provides a preliminary assessment of available resources. Volumes of groundwater in place were determined by calculating pore volumes in sands in the confined section of the Carrizo-Wilcox Aquifer. The outcrop was not included. Fresh groundwater and brackish groundwater volumes were calculated separately. A porosity of 25% was used in pore volume calculations, although this is probably a conservative value. Average porosity for Wilcox sands in the depth range from 4000 to 5000 ft is approximately 25%, but shallower sands are more porous (Loucks et al., 1986; McBride et al., 1991; Dutton and Loucks, 2014). In the study area, the Carrizo-upper Wilcox interval contains approximately 497 million acre-ft of fresh groundwater and 479 million acre-ft of brackish groundwater, and the lower Wilcox interval contains approximately 9 million acre-ft of fresh groundwater and 423 million acre-ft of brackish groundwater (Table 3). The amount of brackish groundwater that could be developed from aquifer storage depends on water-level drawdown and storativity in addition to aquifer pore volume. Assuming 300 ft of water-level drawdown and a storativity of 5×10^{-4} , estimated confined availability is approximately 0.1% of the volume in place (LBG-Guyton Associates, 2003). Using this relationship there is approximately 423,000 acre-ft of producible brackish groundwater in hydraulically separated sands in the lower Wilcox confined area (approximately 7800 mi²) in South Texas.

DISCUSSION

The empirical R_0 /TDS method is a quick and effective way to map regional resources of fresh and brackish groundwater in some aquifers. Cutoff values of R_0 can be determined that distinguish broad categories of groundwater salinity: fresh, slightly saline, moderately saline, and very saline. Where TDS data are scarce, the computational R_w method can be used to calculate R_0 cutoff values independently. Although the correlation between TDS and R_0 is commonly fair to good ($R^2 > 0.7$), other parameters significantly affecting R_0 are hydrochemistry, porosity, lithology, grain size, diagenesis, temperature, pressure, and borehole conditions. Variations in well logging instrumentation and

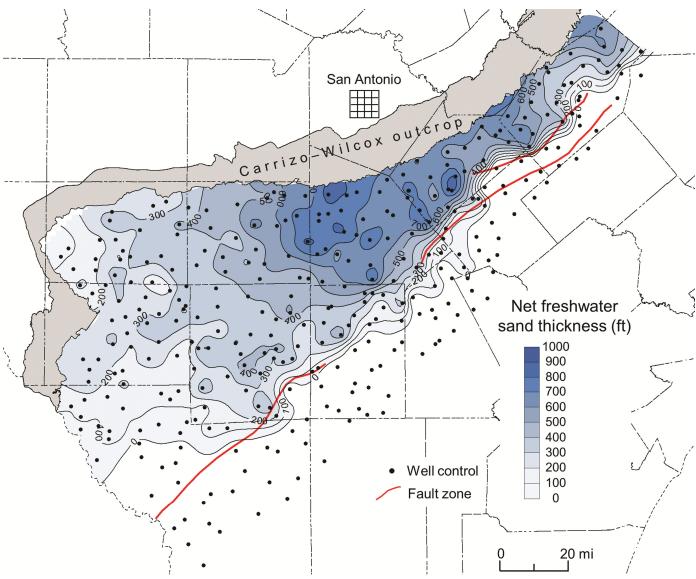


Figure 8. Net thickness of sand containing fresh groundwater in the Carrizo–upper Wilcox interval. Fault zones modified from Ewing (1990). Groundwater salinities increase abruptly across these regional faults.

practice, especially between old and new wells, also affect measured R_0 . Therefore, the methods described in this paper do not precisely calculate TDS from R_0 . More quantitative methods are available for calculating TDS from electric logs, but they are less amenable to regional reconnaissance. Instead, the R_0 and R_w methods provide rough estimates of groundwater in place, which can be used in calculations of producible groundwater. In addition, these methods provide mappable parameters, such as net thickness of brackish groundwater sands, which can be used to locate and rank the resource.

CONCLUSIONS

The Carrizo-upper Wilcox interval contains most of the fresh groundwater in the South Texas study area (497 million acre-ft in place). Fresh groundwater volumes are largest in the north and northeast and extend to depths greater than 5000 ft locally. The Carrizo-upper Wilcox contains an equally large volume of brackish groundwater (479 million acre-ft in place), which is located directly downdip from the fresh groundwater aquifer. In the southwest (Webb County), fresh groundwater is

poorly developed, but large volumes of brackish groundwater are present in the Carrizo–upper Wilcox interval. The lower Wilcox interval contains minor fresh groundwater in South Texas, but its brackish groundwater resource is similar in size to that of the Carrizo–upper Wilcox (423 million acre-ft in place). Similar to the Carrizo–upper Wilcox, lower Wilcox brackish groundwater volumes are largest in the northern and northeastern parts of the study area.

Lower Wilcox brackish groundwater is separated from overlying fresh groundwater in the Carrizo-upper Wilcox by numerous shale beds. Sand/shale interbedding and general shale abundance near the top of the lower Wilcox probably result in hydraulic separation of the fresh and brackish groundwater flow systems. Lower Wilcox brackish groundwater could be produced without significantly affecting overlying fresh groundwater. In contrast, fresh groundwater grades downdip into brackish groundwater within the Carrizo-upper Wilcox, which implies hydraulic communication between fresh and brackish groundwater systems in this interval. Brackish groundwater production in the Carrizo-upper Wilcox could potentially affect the fresh groundwater resource by lowering fluid pressures and enhancing

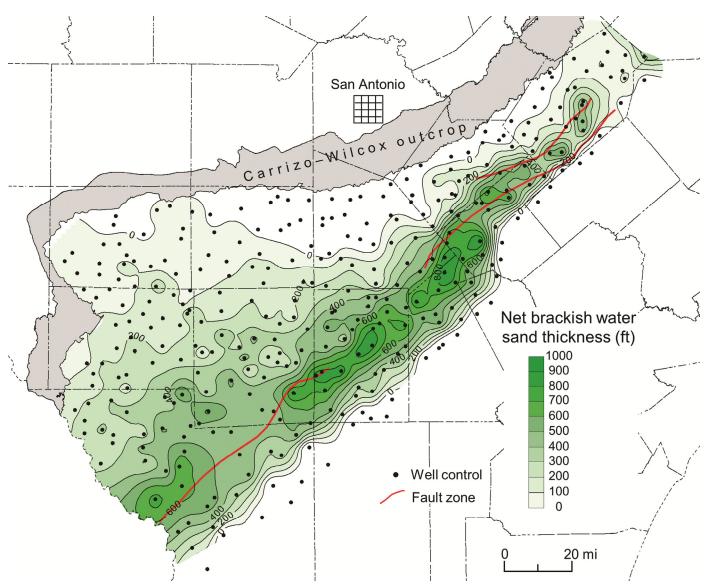


Figure 9. Net thickness of sand containing brackish groundwater in the Carrizo–upper Wilcox interval. Fault zones modified from Ewing (1990). Thick sands and increasing groundwater salinities coincide to form strike-aligned trends of maximum brackish groundwater.

mixing. In the South Texas Carrizo-Wilcox Aquifer, fresh groundwater is heavily produced primarily for agriculture, whereas brackish groundwater is relatively undeveloped. Therefore, the lower Wilcox interval is the most favorable target for brackish groundwater production without impacting the fresh groundwater resource. Lower Wilcox brackish groundwater is an important resource for oil field operations (hydraulic fracturing) and for desalination.

ACKNOWLEDGMENTS

This research was funded by the Shell–UT Unconventional Research (SUTUR) program. Student research assistant Jonathan W. Virdell provided valuable help in all aspects of the study. Bridget R. Scanlon, Walter B. Ayers, Jr., Barry J. Katz, and James Willis provided thorough and constructive reviews that improved this article. Manuscript published with approval of the director of the Bureau of Economic Geology.

REFERENCES CITED

Alger, R. P., 1966, Interpretation of electric logs in fresh water wells in unconsolidated formations: Transactions of the 7th Annual Symposium of the Society of Professional Well-Log Analysts, Tulsa, Oklahoma, May 8–11, p. 1–25.

- Asquith G., D. Krygowski, S. Henderson, and N. Hurley, 2004, Basic well log analysis (2nd ed.): American Association of Petroleum Geologists Methods in Exploration Series 16, Tulsa, Oklahoma, 244 p.
- Ayers, W. B., Jr., and A. H. Lewis, 1985, The Wilcox Group and Carrizo Sand (Paleogene) in East-Central Texas: depositional systems and deep-basin lignite: Texas Bureau of Economic Geology, Austin, 19 p., 30 plates.
- Ayers, W. B., Jr., A. H. Lewis, and G. F. Collins, 1986, Resistivity, lignite, and lithofacies mapping of the Wilcox Group, East-Central Texas, *in* W. R. Kaiser, M. L. Ambrose, W. B. Ayers, P. E. Blanchard, G. F. Collins, G. E. Fogg, D. L. Gower, C. L. Ho, C. S. Holland, M. L. W. Jackson, C. M. Jones, A. H. Lewis, G. L. Macpherson, C. A. Mahan, A. H. Mullin, D. A. Prouty, S. J. Tewalt, and S. W. Tweedy, Geology and ground-water hydrology of deep-basin lignite in the Wilcox Group of East Texas: Texas Bureau of Economic Geology Special Report 10, Austin, p. 31–50.
- Bebout, D. G., B. R. Weise, A. R. Gregory, and M. B. Edwards, 1982, Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: Their potential for production of geo-

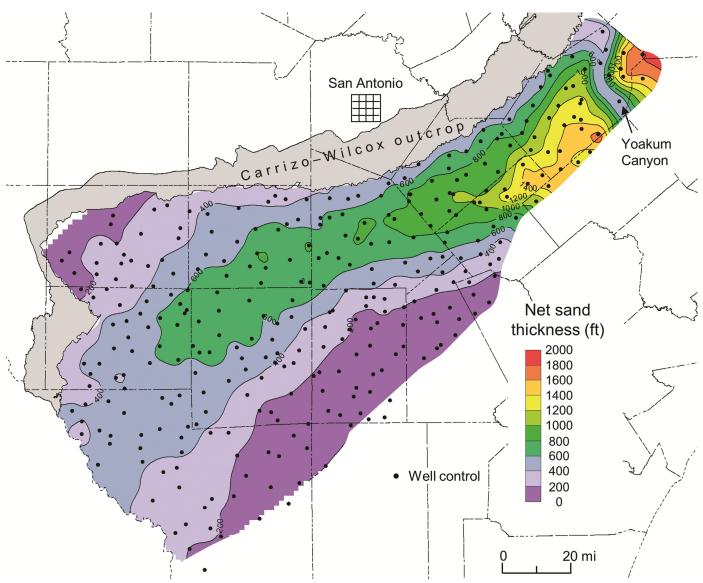


Figure 10. Lower Wilcox net sand thickness. Maximum sand thicknesses in the lower Wilcox are located in the northeastern part of the study area. The shale-filled Yoakum Canyon erosionally truncates lower Wilcox sands.

pressured geothermal energy: Texas Bureau of Economic Geology Report of Investigations 117, Austin, 125 p.

- Collier, H. A., 1993, Borehole geophysical techniques for determining the water quality and reservoir parameters of fresh and saline water aquifers in Texas—Volume I of II: Texas Water Development Board Report 343, Austin, 414 p., appendices.
- Dingus, W. F., and W. E. Galloway, 1990, Morphology, paleogeographic setting, and origin of the middle Wilcox Yoakum Canyon, Texas Coastal Plain: American Association of Petroleum Geologists Bulletin, v. 74, p. 1055–1076.
- Dutton, S. P., and R. G. Loucks, 2014, Reservoir quality and porosity-permeability trends in onshore Wilcox sandstones, Texas and Louisiana Gulf Coast: Application to deep Wilcox plays, offshore Gulf of Mexico: Gulf Coast Association of Geological Societies Journal, v. 3, p. 33–40.
- Edwards, M. B., 1980, The Live Oak delta complex: An unstable, shelf-edge delta in the deep Wilcox trend of South Texas: Gulf Coast Association of Geological Societies Transactions, v. 30, p. 71–79.
- Edwards, M. B., 1981, Upper Wilcox Rosita delta system of South Texas: Growth-faulted shelf-edge deltas: American Association of Petroleum Geologists Bulletin, v. 65, p. 54–73.

- Estepp, J. D., 1998, Evaluation of ground-water quality using geophysical logs: Texas Natural Resource Conservation Commission, Austin, unpublished report, 516 p.
- Ewing, T. E., 1990, Tectonic map of Texas: Texas Bureau of Economic Geology, Austin, scale 1:750,000, 4 sheets.
- Fisher, W. L., 1969, Facies characterization of Gulf Coast Basin delta systems, with some Holocene analogues: Gulf Coast Association of Geological Societies Transactions, v. 19, p. 239– 261.
- Fisher, W. L., and J. H. McGowen, 1967, Depositional systems in the Wilcox Group of Texas and their relationship to occurrence of oil and gas: Gulf Coast Association of Geological Societies Transactions, v. 17, p. 105–125.
- Fogg, G. E., and P. E. Blanchard, 1986, Empirical relations between Wilcox ground-water quality and electric log resistivity, Sabine Uplift area, *in* W. R. Kaiser, M. L. Ambrose, W. B. Ayers, P. E. Blanchard, G. F. Collins, G. E. Fogg, D. L. Gower, C. L. Ho, C. S. Holland, M. L. W. Jackson, C. M. Jones, A. H. Lewis, G. L. Macpherson, C. A. Mahan, A. H. Mullin, D. A. Prouty, S. J. Tewalt, and S. W. Tweedy, Geology and ground-water hydrology of deep-basin lignite in the Wilcox Group of East Texas:

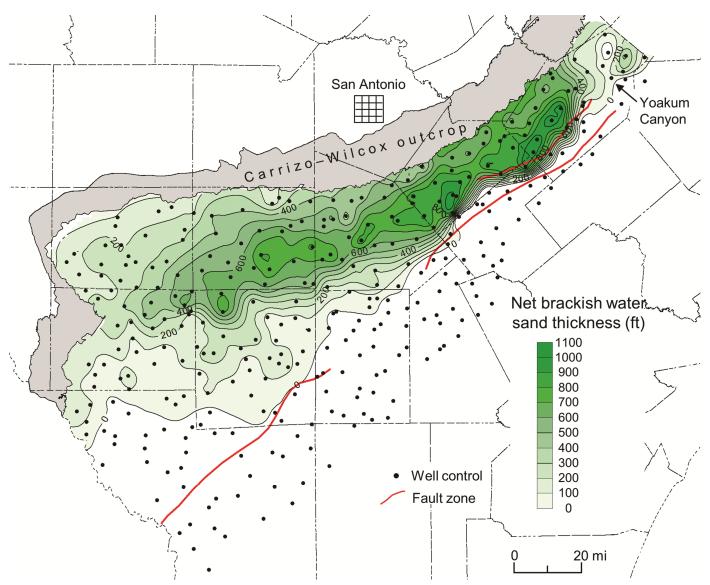


Figure 11. Net thickness of sand containing brackish groundwater in the lower Wilcox interval. Fault zones modified from Ewing (1990). In the lower Wilcox, groundwater salinity increases in the northeastern region are fault related, whereas in the southwestern region, high groundwater salinities are related to poor sand development and low recharge.

Texas Bureau of Economic Geology Special Report 10, Austin, p. 115–118.

- Fogg, G. E., S. J. Seni, and C. W. Kreitler, 1983, Three-dimensional ground-water modeling in depositional systems, Wilcox Group, Oakwood Salt Dome area, East Texas: Texas Bureau of Economic Geology Report of Investigations 133, Austin, 55 p.
- Gaither, B. E., ed., 1986, Catalog of South Texas formation water resistivities: Corpus Christi Geological Society, Texas, 173 p.
- Galloway, W. E., 1984, Hydrogeologic regimes of sandstone diagenesis, *in* D. A. McDonald and R. C. Surdam, eds., Clastic diagenesis: American Association of Petroleum Geologists Memoir 37, Tulsa, Oklahoma, p. 3–13.
- Galloway, W. E., P. E. Ganey-Curry, X. Li, and R. T. Buffler, 2000, Cenozoic depositional history of the Gulf of Mexico Basin: American Association of Petroleum Geologists Bulletin, v. 84, p. 1743–1774.
- Galloway, W. E., T. L. Whiteaker, and P. Ganey-Curry, 2011, History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico Basin: Geosphere, v. 7, p. 938–973.
- Hamlin, H. S., 1988, Depositional and ground-water flow systems of the Carrizo-upper Wilcox, South Texas: Texas Bureau of Economic Geology Report of Investigations 175, Austin, 61 p.

- Hamlin, H. S., D. A. Smith, and M. S. Akhter, 1988, Hydrogeology of Barbers Hill Salt Dome, Texas Coastal Plain: Texas Bureau of Economic Geology Report of Investigations 176, Austin, 41 p.
- Hargis, R. N., 1985, Proposed lithostratigraphic classification of the Wilcox Group of South Texas: Gulf Coast Association of Geological Societies Transactions, v. 35, p. 107–159.
- Hargis, R. N., 1986, Proposed stratigraphic classification of the Wilcox of South Texas, *in* W. L. Stapp, ed., Contributions to the geology of South Texas: South Texas Geological Society, San Antonio, p. 135–159.
- Hoyt, W. V., 1959, Erosional channel in the middle Wilcox near Yoakum, Lavaca County, Texas: Gulf Coast Association of Geological Societies Transactions, v. 9, p. 41–50.
- Jones, P. H., and T. B. Buford, 1951, Electric logging applied to ground-water exploration: Geophysics, v. 16, p. 115–139.
- Klemt, W. B., G. L. Duffin, and G. R. Elder, 1976, Groundwater resources of the Carrizo Aquifer in the Winter Garden area of Texas: Texas Water Development Board Report 210, Austin, v. 1, 30 p.
- Kreitler, C. W., 1979, Ground-water hydrology of depositional systems, in W. E. Galloway, C. W. Kreitler, and J. H. McGow-

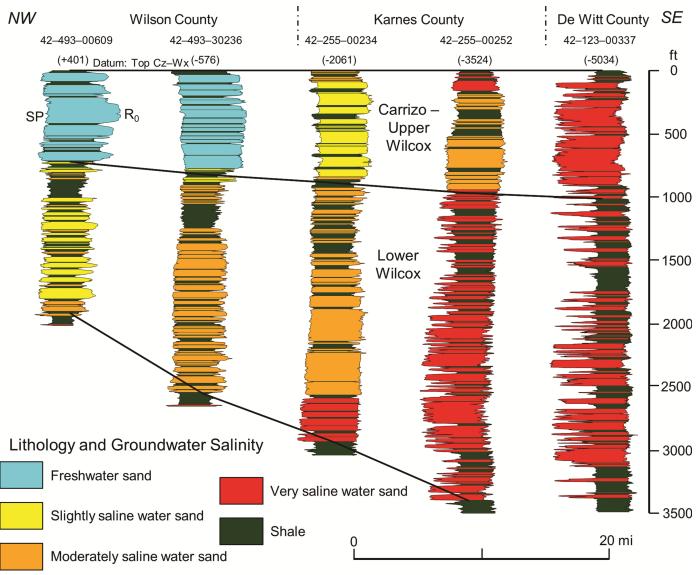


Figure 12. Stratigraphic cross-section 1 showing lithologies and groundwater salinities. See Figure 1 for location. Well API numbers are shown at top. SP increases and resistivity decreases with increasing groundwater salinity.

en, eds., Depositional and ground-water flow systems in the exploration for uranium, a research colloquium: Texas Bureau of Economic Geology Educational Materials 3, Austin, p. 118–176.

- LBG-Guyton Associates, 2003, Brackish groundwater manual for Texas regional water planning groups: Report prepared for the Texas Water Development Board, Austin, p. 199.
- Loucks, R. G., M. M. Dodge, and W. E. Galloway, 1986, Controls on porosity and permeability of hydrocarbon reservoirs in Lower Tertiary sandstones along the Texas Gulf Coast: Texas Bureau of Economic Geology Report of Investigations 149, Austin, 78 p.
- McBride, E. F., T. N. Diggs, and J. C. Wilson, 1991, Compaction of Wilcox and Carrizo sandstones (Paleocene-Eocene) to 4420 m, Texas Gulf Coast: Journal of Sedimentary Petrology, v. 61, p. 73–85.
- Nativ, R., and N. Weisbrod, 1994, Hydraulic connections among subaquifers of the Coastal Plain Aquifer, Israel: Ground Water, v. 32, p. 997–1007

- Scanlon, B. R., R. C. Reedy, and J. P. Nicot, 2014, Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays?: Environmental Research Letters, v. 9, Paper 124011, 14 p.
- Taylor, R. E., 1975, Chemical analyses of ground water for salinewater resources studies in the Texas Coastal Plain stored in National Water Data Storage and Retrieval system: U.S. Geological Survey Open-File Report 75–79, 2 vols., 669 p.
- Turcan, A. N., Jr., 1962, Estimating water quality from electric logs: U.S. Geological Survey Professional Paper 450–C, p. 135–136.
- Turcan, A. N., Jr., 1966, Calculation of water quality from electrical logs—Theory and practice: Louisiana Geological Survey Water Resources Pamphlet 19, Baton Rouge, 23 p.
- Xue, L., and W. E. Galloway, 1993, Sequence stratigraphy and depositional framework of the Paleocene Lower Wilcox strata, northwest Gulf of Mexico Basin: Gulf Coast Association of Geological Societies Transactions, v. 43, p. 453–464.
- Xue, L., and W. E. Galloway, 1995, High-resolution depositional framework of the Paleocene Middle Wilcox strata, Texas Coastal Plain: American Association of Petroleum Geologists Bulletin, v. 79, p. 205-230.

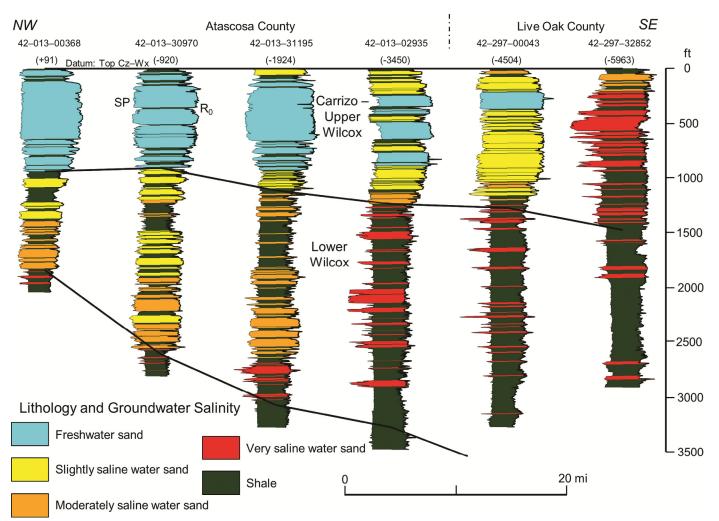


Figure 13. Stratigraphic cross-section 2 showing lithologies and groundwater salinities. See Figure 1 for location. Well API numbers are shown at top. In northern Live Oak County, low groundwater salinities extend as deep as 5000 ft before increasing abruptly.

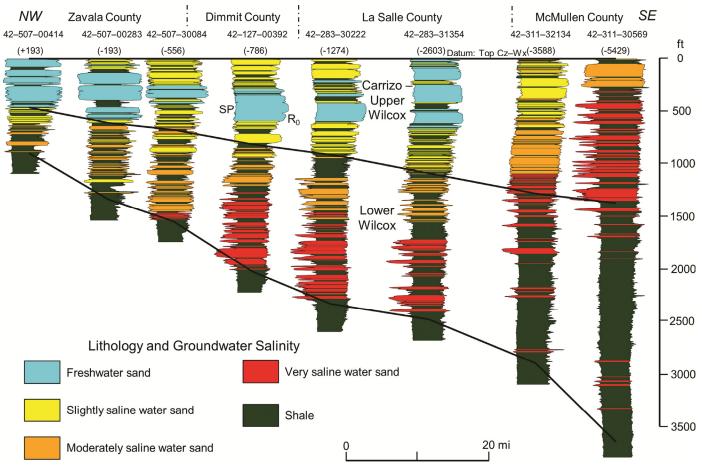


Figure 14. Stratigraphic cross-section 3 showing lithologies and groundwater salinities. See Figure 1 for location. Well API numbers are shown at top. Massive sands in the Carrizo-upper Wilcox form the most important freshwater aquifer in the study area.

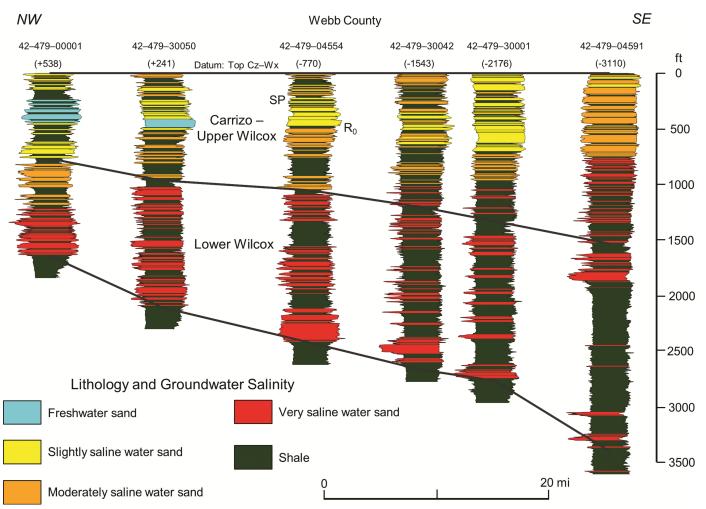


Figure 15. Stratigraphic cross-section 4 showing lithologies and groundwater salinities. See Figure 1 for location. Well API numbers are shown at top. Sands are thinner and shales are thicker here in the southwest relative to the rest of the study area. Freshwater groundwater is limited to updip areas.

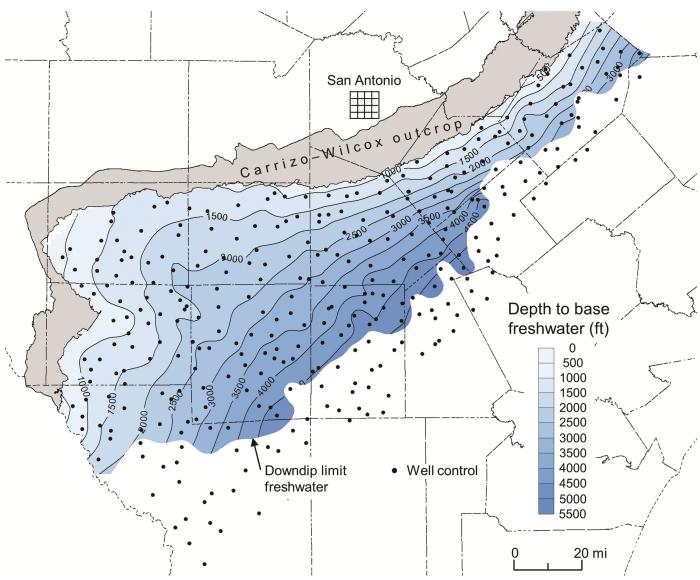


Figure 16. Depth from surface to base of fresh groundwater in the Carrizo-Wilcox Aquifer. Almost all fresh groundwater is in the Carrizo-upper Wilcox interval.

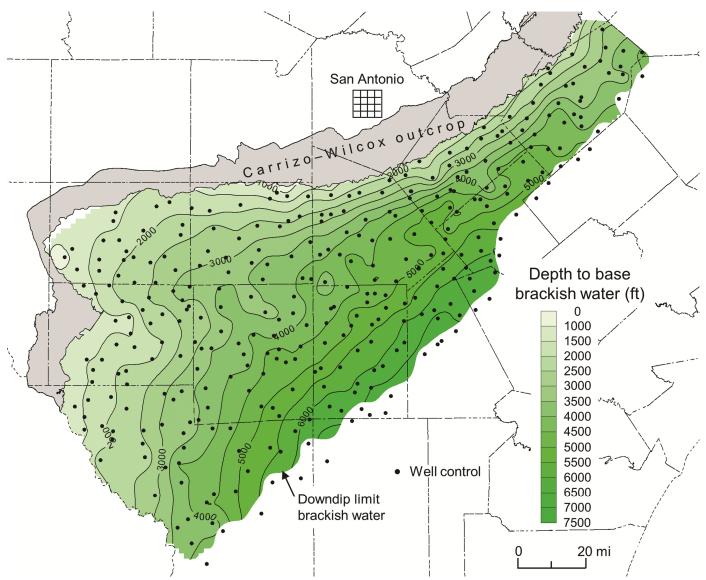


Figure 17. Depth from surface to base of brackish groundwater in the Carrizo-Wilcox Aquifer. Base of brackish groundwater is in the lower Wilcox interval in updip areas but is in the Carrizo-upper Wilcox interval in downdip areas (Figs. 12–15).

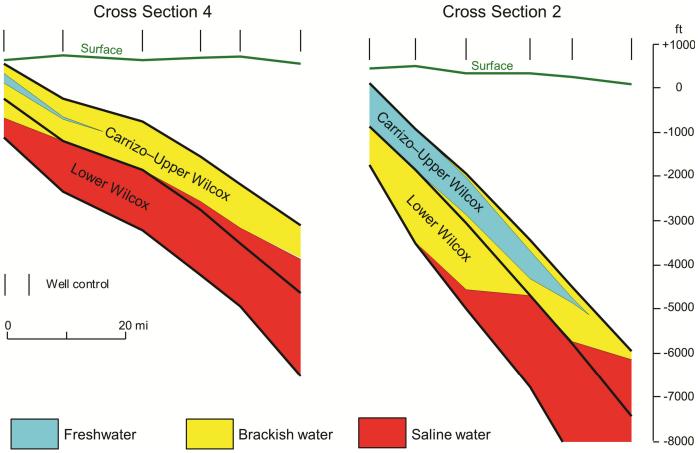


Figure 18. Schematic structural cross-sections 2 and 4 showing relationship of groundwater salinity to depth in the Carrizo-Wilcox Aquifer. These are the same section lines as shown in Figures 13 and 15.

Table 3. Texas.	Volumes of fres	h and brackish	groundwate	r in place*	in the confi	ned section	of the	Carrizo-W	ilcox Aqu	ifer in Sout	h
r											-

Country	Fresh Groundwate	r (10 ⁶ acre-ft)	Brackish Groundwater (10 ⁶ acre-ft)			
County	Carrizo–upper Wilcox	Lower Wilcox	Carrizo-upper Wilcox	Lower Wilcox		
Atascosa	109	0.1	25	81		
Bee	0	0	4	0		
Dimmit	42	0	30	32		
Duval	0	0	1	0		
Frio	86	4	7	90		
Gonzales	47	1	21	59		
Karnes	3	0	38	5		
La Salle	69	0	84	37		
Live Oak	1	0	31	0		
McMullen	25	0	83	2		
Webb	14	0	136	3		
Wilson	59	0.1	12	75		
Zavala	41	4	7	38		
Total	497	9	479	423		

*based on 25% porosity (sand volume × 0.25 = pore volume)

APPENDIX

Well Data Used to Develop R₀/TDS Regressions

County	Petroleum Well API No.	Water Well State Well No.	Elevation Screened Interval ¹ (ft)	Total Dissolved Solids (mg/L)	Resistivity (R₀) (ohm-m)	Distance between Wells (ft)	Interval ²	Source ³
Atascosa	4201300363	6859801	-148	195	100	2831	CZUWX	TWDB
Atascosa	4201300368	6860724	-70	239	120	1561	CZUWX	TWDB
Atascosa	4201300617	6861207	-295	164	180	2742	CZUWX	TWDB
Atascosa	4201300767	7815805	-3890	587	25	7237	CZUWX	TWDB
Atascosa	4201300806	7814701	-3270	2010	16	8142	CZUWX	TWDB
Atascosa	4201300831	7814201	-2965	494	55	6561	CZUWX	TWDB
Atascosa	4201301001	7805605	-1810	321	45	6766	CZUWX	TWDB
Atascosa	4201301319	7803202	-946	293	75	9280	CZUWX	TWDB
Atascosa	4201301929	7812201	-1685	381	70	4275	CZUWX	TWDB
Atascosa	4201302348	7811402	-1872	341	75	532	CZUWX	TWDB
Atascosa	4201302496	7802301	-622	369	75	4866	CZUWX	TWDB
Atascosa	4201302606	7802903	-925	363	75	3194	CZUWX	TWDB
Atascosa	4201302871	7818204	-1363	296	60	17927	CZUWX	TWDB
Atascosa	4201302882	7820101	-2330	345	70	6822	CZUWX	TWDB
Atascosa	4201302887	7821106	-2670	341	60	7183	CZUWX	TWDB
Atascosa	4201302908	7821801	-3222	702	40	17358	CZUWX	TWDB
Atascosa	4201302935	7822201	-3787	595	35	10960	CZUWX	TWDB
Atascosa	4201303114	7803405	-836	334	80	6840	CZUWX	TWDB
Atascosa	4201330868	7805211	-1557	333	40	3846	CZUWX	TWDB
Atascosa	4201330970	7804502	-1160	337	65	3027	CZUWX	TWDB
Atascosa	4201331768	6860821	-380	172	200	3085	CZUWX	TWDB
Atascosa	4201332196	7821903	-3501	546	25	4642	CZUWX	TWDB
Atascosa	4201332467	6861702	-440	196	170	11578	CZUWX	TWDB
Atascosa	4201333956	7812302	-1785	367	100	8975	CZUWX	TWDB
Atascosa	4201334190	7823204	-3837	777	25	8305	CZUWX	TWDB
Atascosa	4201334208	7803901	-1311	340	50	5727	CZUWX	TWDB
Dimmit	4212700076	7717803	190	520	76	6118	CZUWX	TWDB
Dimmit	4212700346	7726615	-218	382	74	4924	CZUWX	TWDB
Dimmit	4212700377	7728502	-820	617	52	16721	CZUWX	TWDB
Dimmit	4212700385	7729201	-1200	1013	40	8699	CZUWX	TWDB
Dimmit	4212700386	7729602	-1489	495	53	11447	CZUWX	TWDB
Dimmit	4212700392	7729901	-1550	546	67	13919	CZUWX	TWDB
Dimmit	4212700399	7737201	-1226	467	71	3515	CZUWX	TWDB
Dimmit	4212700542	7734302	-89	404	39	1980	CZUWX	TWDB
Dimmit	4212700657	7749601	-128	850	34	12593	CZUWX	TWDB
Dimmit	4212730220	7728601	-1185	473	33	16609	CZUWX	TWDB
Dimmit	4212730527	7718802	-621	350	71	1512	CZUWX	TWDB
Dimmit	4212730642	7735801	-499	410	46	7771	CZUWX	TWDB
Dimmit	4212730782	7736801	-874	551	42	6951	CZUWX	TWDB
Dimmit	4212730949	7742801	-761	683	45	17650	CZUWX	TWDB
Dimmit	4212731729	7728702	-813	434	63	10558	CZUWX	TWDB
Dimmit	4212732067	7735701	-411	745	38	10526	CZUWX	TWDB
Frio	4216300025	7708201	-206	494	57	18467	CZUWX	TWDB
Frio	4216300039	6964611	212	551	61	12836	CZUWX	TWDB
Frio	4216300092	6857806	120	584	49	5850	CZUWX	TWDB
Frio	4216300161	6858506	-25	375	76	5489	CZUWX	TWDB

Using Electric Logs to Estimate Groundwater Salinity and Map Brackish Groundwater Resources in the Carrizo-Wilcox Aquifer in South Texas	129
---	-----

Frio	4216300529	7802402	-863	394	78	7661	CZUWX	TWDB
Frio	4216300706	7801801	-912	329	62	9101	CZUWX	TWDB
Frio	4216300729	7801501	-674	436	63	8979	CZUWX	TWDB
Frio	4216300816	7809801	-1219	315	69	9102	CZUWX	TWDB
Frio	4216300849	7810102	-1179	348	51	12185	CZUWX	TWDB
Frio	4216301158	7708809	-850	394	79	523	CZUWX	TWDB
Frio	4216301360	7716502	-1178	408	71	5192	CZUWX	TWDB
Frio	4216301407	7715301	-797	413	63	8336	CZUWX	TWDB
Frio	4216301455	7714805	-1133	381	67	14136	CZUWX	TWDB
Frio	4216301662	7706205	-455	761	39	5390	CZUWX	TWDB
Frio	4216330005	6963902	-130	536	41	12154	CZUWX	TWDB
Frio	4216331938	7724101	-1496	302	74	6884	CZUWX	TWDB
Gonzales	4217700152	6721705	-509	317	69	5202	CZUWX	TWDB
Gonzales	4217700219	6728403	128	155	300	4400	CZUWX	TWDB
Gonzales	4217700246	6737203	-1895	2027	19	17544	CZUWX	TWDB
Gonzales	4217700324	6734904	-200	115	164	13161	CZUWX	TWDB
Gonzales	4217700371	6736803	-1490	822	60	12902	CZUWX	TWDB
Gonzales	4217700413	6743806	-1615	239	160	7984	CZUWX	TWDB
Gonzales	4217700429	6751102	-1905	731	61	10002	CZUWX	TWDB
Gonzales	4217700481	6727903	-255	240	110	3135	CZUWX	TWDB
Gonzales	4217700602	6728902	-502	552	47	4775	CZUWX	TWDB
Gonzales	4217700615	6728406	33	284	112	4120	CZUWX	TWDB
Gonzales	4217730230	6737203	-1895	2027	13	11449	CZUWX	TWDB
Gonzales	4217731385	6745203	-2570	2844	12	11599	CZUWX	TWDB
Gonzales	4217731801	6744802	-2230	1356	15	10029	CZUWX	TWDB
Gonzales	4217732114	6730507	-2590	554	50	3998	CZUWX	TWDB
Karnes	4225500060	same well	-4547	9756	3	0	LWX	USGS
Karnes	4225500061	same well	-5698	31579	2	0	LWX	USGS
Karnes	4225500064	same well	-4599	6924	4	0	CZUWX	USGS
Karnes	4225500234	6750803	-2275	1500	13	20780	CZUWX	TWDB
Karnes	4225500622	7816601	-4853	1146	15	16661	CZUWX	TWDB
Karnes	4225500668	7901202	-4160	2255	9	7456	CZUWX	TWDB
Karnes	4225500674	7808304	-4386	1488	14	18750	CZUWX	TWDB
Karnes	4225500795	7807901	-3336	629	15	7459	CZUWX	TWDB
Karnes	4225500824	7815301	-4325	600	16	3141	CZUWX	TWDB
Karnes	4225530272	7816601	-4853	1146	9	15498	CZUWX	TWDB
La Salle	4228300015	7722903	-1482	404	64	5916	CZUWX	TWDB
La Salle	4228300016	7730602	-1688	439	53	12748	CZUWX	TWDB
La Salle	4228300038	7825601	-2622	524	54	14400	CZUWX	TWDB
La Salle	4228300060	7740305	-2338	617	34	13438	CZUWX	TWDB
La Salle	4228300094	7834205	-3258	603	28	8822	CZUWX	TWDB
La Salle	4228300124	7841302	-3182	805	33	19765	CZUWX	TWDB
La Salle	4228300196	same well	-5120	25691	4	0	LWX	USGS
La Salle	4228300222	7841101	-2853	612	37	4844	CZUWX	TWDB
La Salle	4228300309	7747901	-2719	833	38	11911	CZUWX	TWDB
La Salle	4228300688	7745602	-1688	557	42	17862	CZUWX	TWDB
La Salle	4228330178	7825901	-2719	535	44	5823	CZUWX	TWDB
La Salle	4228330222	7739402	-2035	687	43	3112	CZUWX	TWDB
La Salle	4228330229	same well	-4392	17400	3	0	LWX	CCGS
La Salle	4228330304	7738102	-1621	471	40	4938	CZUWX	TWDB
La Salle	4228331029	same well	-5542	26100	3	0	LWX	CCGS
_					-	-		

La Salle	4228331147	7849802	-3870	1336	12	18025	CZUWX	TWDB
La Salle	4228331354	7748301	-3063	591	35	7824	CZUWX	TWDB
La Salle	4228332209	7748801	-2955	940	24	15949	CZUWX	TWDB
Live Oak	4229700043	7823502	-4484	1012	23	12751	CZUWX	TWDB
Live Oak	4229730935	same well	-6545	22675	2	0	CZUWX	CCGS
McMullen	4231100007	7828101	-3685	558	36	18299	CZUWX	TWDB
McMullen	4231100022	7828602	-4272	633	26	8675	CZUWX	TWDB
McMullen	4231100035	same well	-4414	10312	5	0	LWX	USGS
McMullen	4231100035	same well	-4854	24743	2.5	0	LWX	USGS
McMullen	4231100076	7828603	-3371	659	25	4184	CZUWX	TWDB
McMullen	4231100156	7827503	-3160	613	30	10752	CZUWX	TWDB
McMullen	4231100167	7821801	-3222	702	22	17460	CZUWX	TWDB
McMullen	4231100677	7838101	-5172	1034	18	86	CZUWX	TWDB
McMullen	4231101245	same well	-5567	12228	3	0	LWX	USGS
McMullen	4231101428	7842902	-3818	1430	17	8462	CZUWX	TWDB
McMullen	4231101532	7851201	-4800	2007	15	19012	CZUWX	TWDB
McMullen	4231101805	same well	-6795	22721	5	0	CZUWX	CCGS
McMullen	4231132690	7837103	-4855	1561	16	11804	CZUWX	TWDB
McMullen	4231134159	7827503	-3160	613	25	5128	CZUWX	TWDB
Webb	4247900630	same well	-5573	12943	7	0	CZUWX	USGS
Webb	4247900630	same well	-5112	15254	6	0	CZUWX	USGS
Webb	4247904554	8504401	-1380	1047	22	7839	CZUWX	TWDB
Webb	4247930001	8521501	-2659	2274	18	32470	CZUWX	TWDB
Webb	4247930050	8501301	-820	1157	37	25636	CZUWX	TWDB
Webb	4247930166	7752801	-1670	724	43	8847	CZUWX	TWDB
Webb	4247930248	7759401	-1080	792	47	21353	CZUWX	TWDB
Webb	4247930373	same well	-3489	10656	7	0	LWX	CCGS
Webb	4247930464	8519903	-1486	1916	14	29230	CZUWX	TWDB
Webb	4247930680	8503905	-1305	1416	15	4852	CZUWX	TWDB
Webb	4247931169	same well	-2661	3050	20	0	CZUWX	Estepp (1998)
Webb	4247932519	7757501	-130	949	47	5992	CZUWX	TWDB
Webb	4247932859	7749601	-128	850	68	16719	CZUWX	TWDB
Webb	4247932947	7759401	-1080	792	45	15336	CZUWX	TWDB
Webb	4247934159	7763201	-2742	1875	22	29420	CZUWX	TWDB
Webb	4247934601	8529202	-2705	3055	14	9749	CZUWX	TWDB
Wilson	4249300609	6741102	318	82	227	9089	CZUWX	TWDB
Wilson	4249300768	6741501	-54	325	118	15790	CZUWX	TWDB
Wilson	4249301054	6749401	-542	834	27	16854	CZUWX	TWDB
Wilson	4249301239	6856409	-531	475	65	11369	CZUWX	TWDB
Wilson	4249301419	6856307	-424	778	43	1880	CZUWX	TWDB
Wilson	4249301501	6863208	-1190	338	61	8332	CZUWX	TWDB
Wilson	4249301541	6864103	-756	464	32	6044	CZUWX	TWDB
Wilson	4249301551	6864401	-1612	526	39	12130	CZUWX	TWDB
Wilson	4249301641	6862802	-1158	333	30	8930	CZUWX	TWDB
Wilson	4249301709	6862802	-1158	333	59	9134	CZUWX	TWDB
Wilson	4249301740	6854703	-332	191	120	3795	CZUWX	TWDB
Wilson	4249301742	7806302	-1607	440	52	514	CZUWX	TWDB
Wilson	4249301747	7807501	-3010	449	49	15266	CZUWX	TWDB
Wilson	4249330060	6856801	-678	638	28	16547	CZUWX	TWDB
Wilson	4249330236	6742801	-702	286	42	7320	CZUWX	TWDB
Wilson	4249330683	6862802	-1158	333	60	4907	CZUWX	TWDB

Wilson	4249330907	6750701	-1883	3026	13	12992	CZUWX	TWDB
Wilson	4249331431	6742801	-702	286	84	17573	CZUWX	TWDB
Wilson	4249331652	6741702	-240	147	78	4330	CZUWX	TWDB
Wilson	4249332275	6863801	-1789	399	67	2912	CZUWX	TWDB
Zavala	4250700122	7713202	-761	355	77	13333	CZUWX	TWDB
Zavala	4250700193	7704202	201	408	80	2244	CZUWX	TWDB
Zavala	4250700283	7711707	-516	426	50	14826	CZUWX	TWDB
Zavala	4250700379	7711703	-503	424	79	688	CZUWX	TWDB
Zavala	4250700414	7702606	-132	423	50	10062	CZUWX	TWDB
Zavala	4250700463	7702202	430	379	60	12400	CZUWX	TWDB
Zavala	4250700588	7717107	-19	340	93	3993	CZUWX	TWDB
Zavala	4250700612	7718105	-394	313	112	9457	CZUWX	TWDB
Zavala	4250700615	7718406	-354	308	92	3170	CZUWX	TWDB
Zavala	4250700634	7718602	-457	521	60	6032	CZUWX	TWDB
Zavala	4250730084	7720801	-1442	2010	12	8331	CZUWX	TWDB
Zavala	4250730114	7719803	-731	412	60	4965	CZUWX	TWDB
Zavala	4250731618	7710604	-276	467	62	6005	CZUWX	TWDB

¹Relative to mean sea level

²Stratigraphic interval: CZUWX, Carrizo–upper Wilcox; and (LWX) Lower Wilcox

³Source of TDS data: TWDB, Texas Water Development Board; USGS, U.S. Geological Survey (Taylor, 1975); and CCGS, Corpus Christi Geological Society (Gaither, 1986)