DEPOSITIONAL SYSTEMS, FACIES VARIABILITY, AND RESERVOIR QUALITY IN SHALLOW-MARINE RESERVOIRS IN THE EOCENE UPPER WILCOX GROUP IN FANDANGO FIELD, ZAPATA COUNTY, TEXAS

William A. Ambrose, Shirley P. Dutton, and Robert G. Loucks

Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, University Station, Box X, Austin, Texas 78713–8924, U.S.A.

ABSTRACT

Deeply-buried (>13,000 ft [>3960 m]) reservoirs of shallow-marine origin in the Eocene upper Wilcox Group in Fandango Field in Zapata County, Texas have low-permeability and moderate-to-low porosity values (commonly <1 md and <15%, respectively). From a dataset of 7 whole cores that collectively compose ~1070 ft (~326 m) of section within a depth range from 13,725 to 18,183 ft (4184 to 5544 m), this study interprets a wave-dominated, microtidal (diurnal tidal range <6.6 ft [<2 m]) setting for the upper Wilcox Group in Fandango Field. Upper-shoreface and proximal-delta-front facies in Fandango Field are upward coarsening and feature multiple, scour-based beds of planar-stratified, upper-fine-grained sandstone and burrowed beds with Ophiomorpha and lesser Planolites. In contrast, lower- and middle-shoreface facies are extensively burrowed, featuring Palaeophycus, Schaubcylindrichnus, and Asterosoma with subordinate Ophiomorpha. Modern depositional analogs for the upper Wilcox Group in Fandango Field include the wave-dominated Santee Delta and Cape Romain in South Carolina, whereas upper-shoreface and wave-dominated deltaic deposits in the Upper Cretaceous (Campanian) Pictured Cliffs Sandstone in the San Juan Basin in New Mexico and Colorado serve as an ancient facies analog.

Crossplots of grain size versus porosity and permeability in the upper Wilcox succession in Fandango Field from a dataset of 347 plugs from whole cores indicate that grain size and facies origin are poor predictors of reservoir quality, defined as porosity and permeability. However, some facies display variation in reservoir quality, expressed in terms of range and average values of porosity and permeability. Optimal reservoir quality occurs in sandy upper-shoreface/proximal-delta-front facies and transgressive deposits. Relatively high values of average porosity (14.2 to 16.5%) occur in amalgamated, fine-grained sandstone beds in upper-shoreface/proximal-delta-front facies, whereas lower values (<9%) are prevalent in lower-shoreface/distal-delta-front facies. Similarly, greater values of permeability occur within upper-shoreface/proximal-delta-front and transgressive deposits, with average values of 3.56 and 2.80 md in upper-shoreface/proximal-delta-front and transgressive deposits, respectively. In contrast, average permeability values are much lower (0.14 md) in lower-shoreface/distal-delta-front facies.

This study concludes that grain size and facies variability in the upper Wilcox succession in Fandango Field are poor indicators of reservoir quality. Other factors such as diagenesis may control reservoir quality and should also be considered in reservoir development in Fandango Field and other fields in the South Texas Wilcox trend.

INTRODUCTION

During early Eocene time (50 Ma), the area of Fandango Field, located in Zapata County in South Texas (Fig. 1), occupied a coastal position in a transitional area between wave-dominated deltaic and shoreface depositional systems (Galloway et al., 2000; Blakey, 2014). The upper Wilcox Group in Fandango Field was deposited along a major depositional axis associated with the ancestral Rio Grande Delta. Major sediment sources are inferred from the Mogollon Highlands in southern Arizona and southwestern New Mexico (Galloway et al., 2011).

Low-permeability (commonly <1 md) gas reservoirs in Fandango Field are trapped within a faulted anticline developed on the downthrown side of a major growth fault associated with the late Wilcox shelf edge (Fig. 2). (Hargis, 1985; Robinson et al., 1986; Stricklin, 1994; Debus, 1996; Meyerhoff and Braddock, 1998). Low-permeability gas reservoirs in the upper Wilcox section in Fandango Field commonly require hydraulic fracturing to stimulate production. Sandstone bodies in the field are overpressured and produce gas at high rates of 3000 to 5000 Mcf/d.
Reservoirs in Fandango Field occur within predominantly upward-coarsening shallow-marine parasequences that individually range from 100 to 250 ft (30.5 to 76.2 m) thick (Fig. 2). These shallow-marine parasequences represent a variety of shoreface, beach, and inner-shelf facies as well as wave-dominated deltaic environments that include delta-front, channel-mouth-bar, and distributary-channel facies (Joyce, 1954; Rolf, 1987; Levin, 1983). The diurnal tidal regime for these upper Wilcox shallow-marine parasequences is interpreted to be microtidal, defined as a diurnal tidal range <6.6 ft (<2 m) (Davies, 1964). This interpretation is based on great strike-continuity of main framework sandstone bodies (Levin, 1993; Meyerhoff and Braddock, 1998), consistent with a wave-dominated coastal setting and barrier-island morphology along microtidal shorelines (Hoyt and Henry, 1967; Hayes, 1976, 1979; Wilkinson and Basse, 1978; Galloway and Cheng, 1985; Galloway, 1986). Debus (1996) and Meyerhoff and Braddock (1998) document extreme strike-elongate (southwest-to-northeast) sandstone-body continuity (>30 mi [>48 km]) in upper Wilcox reservoirs, also consistent with a wave-dominated shoreline setting. A microtidal regime for the upper Wilcox section in Fandango Field is also consistent with the absence of features such as rhythmic stratification, lenticular beds, flaser ripples, and double-draped ripples in cores in the field, features that are common in tidally modified or tide-dominated settings (Reineck and Wunderlich, 1968; de Mowbray and Visser, 1984; Kvale et al., 1989; Kvale and Archer, 1990; White et al., 2004; Dalrymple and Choi, 2007).

OBJECTIVES, DATA, AND METHODS

The three objectives of this study are to: (1) provide a set of descriptions of cores in the upper Wilcox Group in Fandango Field; (2) interpret sedimentary processes and depositional facies from core and wireline logs of these cored wells; and (3) describe relationships between grain size and reservoir quality (porosity and permeability) for individual facies, as well as for combined facies. Whole cores from the upper Wilcox Group in Fandango Field illustrate a variety of systems tracts, depositional systems and facies, and provide a context for reservoir-quality data. This study summarizes porosity and permeability data, as well as selected descriptions and facies interpretation from a set of whole cores from 7 wells (located in Figure 2) from Fandango Field that collectively comprise ~1070 ft (~326 m) of section from the upper Wilcox Group. Core descriptions from 5 of these 7 wells are included in this report to reduce redundancy in facies descriptions. Data recorded in these whole core descriptions include grain size, stratification, contacts, as well as accessory features such as soft-sediment deformation, burrows, clay clasts, roots,
Depositional Systems, Facies Variability, and Reservoir Quality in Shallow-Marine Reservoirs in the Eocene Upper Wilcox Group in Fandango Field, Zapata County, Texas

and shell and organic fragments that are diagnostic of sedimentary processes and depositional environments. These core descriptions are also supplemented by photographs that illustrate facies, and reservoir quality. Depositional systems and facies interpretations are made by integrating core descriptions, accessory features, and wireline-log responses of cored wells.

A structure map of Fandango Field, illustrating distribution of wells and production data from cored wells, provided by Comstock Resources, Inc., was integrated into the study. Other data integrated with core descriptions and facies interpretations include porosity and permeability data from plugs. A total of 347 data points for porosity and 286 data points for permeability from plugs from the full set of 7 whole cores are used to document relationships between grain size (expressed in terms of ϕ units) and porosity and permeability values for all combined depositional systems and facies, as well as individual facies in the upper Wilcox succession in Fandango Field.

Two primary depositional systems in the upper Wilcox Group in Fandango Field, which include distal-deltaic and lower-shoreface facies, are characterized by thick (commonly >50 ft [>15 m]) sections of silty mudstone interbedded with thin (<4 in [<10.2 cm]) beds of very fine-grained sandstone. Recognition criteria for distal-shoreline systems, discussed in this section, are applied to the Shell No. 1–R Leyendecker and Shell No. 1 Muzza cores, located in Figure 2.

Analogs with similar distal-deltaic and lower-shoreface facies include the Olmos Formation in the Maverick Basin (Tyler and Ambrose, 1986), the middle Miocene in Galveston County (Ambrose, 1990), the Woodbine Group in southeast Texas (Ambrose and Hentz, 2012), and the San Juan Basin in New Mexico and Colorado (Flores and Erpenbeck, 1979; Cumella, 1981; Condon et al., 1997; Ambrose and Ayers, 2007). Stratifi-

Other geologic controls on reservoir quality in the upper Wilcox succession in South Texas include compaction, variations in mineralogy, and temperature (Loucks et al., 1984, 1986; Dutton, 1987; Dutton and Loucks, 2010; Taylor et al., 2010). A companion paper (Dutton et al., 2016, this volume) documents these factors as they are related to reservoir quality in Fandango Field. The goal of this paper, however, is to describe any relationships between grain size versus porosity and permeability that may exist for the upper Wilcox succession, and not to examine later diagenetic modifications to reservoir quality.

DISTAL-SHORELINE SYSTEMS

Distal-shoreline systems in upper Wilcox cores in Fandango Field, which include distal-delta-front and lower- to middle-shoreface facies, are characterized by thick (commonly >50 ft [>15 m]) sections of silty mudstone interbedded with thin (<4 in [<10.2 cm]) beds of very fine-grained sandstone. Recognition criteria for distal-shoreline systems, discussed in this section, are applied to the Shell No. 1–R Leyendecker and Shell No. 1 Muzza cores, located in Figure 2.

Analogs with similar distal-deltaic and lower-shoreface facies include the Olmos Formation in the Maverick Basin (Tyler and Ambrose, 1986), the middle Miocene in Galveston County (Ambrose, 1990), the Woodbine Group in southeast Texas (Ambrose and Hentz, 2012), and the San Juan Basin in New Mexico and Colorado (Flores and Erpenbeck, 1979; Cumella, 1981; Condon et al., 1997; Ambrose and Ayers, 2007). Stratifi-
cation in these facies typically consists of starved ripples and low-angle, wavy laminae interbedded with burrowed mudstone beds within upward-coarsening successions. Ichnofauna are commonly dominated by *Planolites* with minor *Asterosoma*, *Teichichnus*, with minor *Ophiomorpha* within a *Cruziana* suite (Seilacher, 1964; Frey et al., 1990; Bromley and Asgaard, 1991; Benton and Harper, 1997; Anderson and Droser, 1998). Climbing ripples and thin, erosion-based and parallel-bedded sandstones with wavy and convex upper surfaces record periods of strong wave and/or storm activity.

Stronger storms are recorded by zones of broken and disrupted sandstone beds with mudstone clasts and shell fragments, similar to tempestite deposits described by Myrow and Southard (1996). Heavily burrowed strata alternating with sparsely burrowed zones with pyrite nodules reflect fluctuating conditions of salinity and oxygenation (MacEachern et al., 2005). Shallow-water to shallow-marine deposits associated with deltaic headlands (Mulder et al., 2003; Petter and Steel, 2006; Bhattacharya and MacEachern, 2009).

Shell No. 1–R Leyendecker

Description

A typical section in distal-shoreline systems occurs in the Shell No. 1–R Leyendecker well from 14,340 to 14,411 ft (4372.0 to 4393.6 m) (Fig. 3). The Shell No. 1–R Leyendecker well is located in the western part of Fandango Field, approximately 1000 ft (305 m) east of the main bounding growth fault (Fig. 2). According to Comstock Resources, Inc., the well has produced 23.8 Bcf (billion cubic feet) of gas collectively from three reservoirs (R, T3, and T6U [Fig. 2]).

Thickest and coarsest sandstone beds in the Shell No. 1–R Leyendecker well are up to 2 ft (0.6 m) thick, are fine-grained, and occur at the top of the section (Fig. 3). Many thin, very fine-grained sandstone beds in this core have an erosional base, are sparsely burrowed with minor *Planolites*, and are either internally laminated or have small-scale ripples (Figs. 4A and 4B). Thicker and coarser-grained sandstone beds in the succession have larger-scale, cross-cutting ripple scours above an erosional base. Fauna in these thicker sandstone beds are represented mainly by *Ophiomorpha* (Fig. 4C).
Interpretation

The Shell No. 1–R Leyendecker well is a muddy succession of distal-delta-front/lower-shoreface deposits. Fair-weather depositional processes in this succession are recorded in thin (commonly <4 in (<10.2 cm)) beds of laminated and ripple-stratified, very fine-grained sandstone beds (Figs. 4A and 4B). Higher-energy deposits recording wave-rewrking are represented by erosion-based beds of cross-cutting ripples in fine-grained
sandstone with *Ophiomorpha* burrows (Fig. 4C). Because of the preponderance of these thin (commonly <4 in [<10.2 cm]) beds of very fine- to fine-grained sandstone interbedded with relatively thicker beds of silty mudstone, the overall stratigraphic succession in the Shell No. 1–R Leyendecker well represents a low-energy, distal-delta-front or lower-shoreface setting.

Low-energy conditions with predominant suspension sedimentation in the distal-delta-front/lower-shoreface facies are recorded by mostly mudstone (Fig. 3). Thin (commonly <4 in [<10.2 cm]) sandstone beds in this succession record multiple episodes of turbidites in rapidly deposited splays, commonly expressed as sharp-based, parallel-laminated sandstone beds and zones of contorted strata on the unstable delta front substrate (Allison and Neill, 2002; Mulder et al., 2003; Neill And Allison, 2005; Pettet and Steel, 2006; Bhattacharya and MacEachern, 2009).

Interpretation

The cored interval in the Shell No. 1 Muzza well records middle-shoreface facies grading upward into upper-shoreface facies in the top 5 ft (1.5 m) of the cored interval. This interpretation is based on: (1) a relatively coarser grain size than lower-shoreface deposits in the Shell No. 1–R Leyendecker core, where numerous mudstone beds are present (Fig. 3); (2) sparse number of zones with preserved stratification, consisting mostly of ripples; and (3) a high degree of bioturbation with ichnofauna dominated by *Palaeophycus*, *Planolites*, *Schaubcylindrichnus*, and *Asterosoma*, with minor *Ophiomorpha* (Fig. 5). The presence of *Schaubcylindrichnus* and *Asterosoma* suggests a low-energy, middle shoreface setting as opposed to a high-energy upper-shoreface to beach setting with high wave energy (Seilacher, 1964; Frey et al., 1990; Bromley and Asgaard, 1991; Benton and Harper, 1997; Gani et al., 2008).

PROXIMAL-SHORELINE SYSTEMS

Sandy, wave-dominated coastal systems, which include beach, upper-shoreface, and proximal-delta-front facies, are composed typically of well sorted and continuous, strike-elongate sandstone bodies. These systems are internally homogeneous as a result of their high-energy, shallow-marine depositional origin. Barrier-island systems are similar to beach systems, except that they consist of elongate, shore-parallel sand bodies separated from the shoreline by muddy lagoons. Strandplain deposits, also related to beach deposits, are composed of parallel, sandy beach ridges landward of the shoreline, reflecting individual episodes of coastal progradation (Curray et al., 1969; Hoyt, 1969; Dominguez et al., 1987).

The texture and degree of sandiness of beach deposits are a function of the beach profile, typically consisting of a gently sloping substrate in the transition from nearshore to offshore. Areas of intermediate water depth consist of the foreshore...
(beach) and upper shoreface (mean water depth of <6.6 ft [<2 m]) (Howard and Reineck, 1972; Hill and Hunter, 1976).

The foreshore and upper-shoreface environments are the sandiest parts of the system, which together compose the beach or barrier core. These environments are exposed to high-energy wave processes that winnow fine-grained material, resulting in relatively sandy, homogeneous deposits.

North American examples of modern shoreface, barrier-island, and strandplain deposits include Galveston Island in southeast Texas (Bernard et al., 1962), Padre Island in South Texas (Dickinson, 1971), the Nayarit strandplain along the western coastline of Mexico (Curray et al., 1969), and the wave-dominated shoreline along the Santee Delta in South Carolina (Stephens et al., 1976; Hodge, 1981). Galveston Island is an
example of a progradational barrier island that has migrated offshore during the Holocene as a result of sediment supply exceeding subsidence and/or rise in sea level (Bernard et al., 1962). Cross sections of Galveston Island exhibit an upward-coarsening grain-size trend from lower shoreface to eolian dune facies. Sandbody homogeneity and reservoir quality increase upward as a result of upper-shoreface facies being superimposed above lower-shoreface facies during episodes of coastal offlap (Bernard et al., 1962). Although beach deposits contain tabular, laterally continuous, and homogeneous sandstone bodies, they are commonly crosscut by tidal-inlet and distributary-channel deposits that introduce facies heterogeneity and permeability contrasts, as for example in the 41–A reservoir in the Oligocene Frio West Ranch Field in Jackson County, Texas (Galloway and Cheng, 1985; Galloway, 1986). The Santee Delta is an example of a wave-dominated shoreline depositional system, where shore-parallel, sandy-beach, and upper-shoreface deposits are locally transected by a tidally influenced distributary channel. Other areas of facies heterogeneity in the Santee Delta and adjacent areas along the South Carolina shoreline occur along landward pinchouts of lobate washover fans, and transgressive beach escarpments (Ruby, 1981). Facies heterogeneity is also controlled by tidal inlets and ebb- and flood-tidal deltas that locally bisect the shoreline (Swift, 1968; Kumar and Sanders, 1976; Hayes, 1979; Kraft and John, 1979; Reinson, 1984).

Shell No. 1 Garza

Description

The non-productive Shell No. 1 Garza well is located on the southern margin of Fandango Field (Fig. 2). A cored interval in the Shell No. 1 Garza well, which extends from 16,190 to 16,265 ft (4936.0 to 4958.8 m), consists of a 75-ft (22.9-m) sandstone-rich section of predominantly fine-grained sandstone within an interval characterized by a blocky GR log response (Fig. 7). This sandy section contains numerous sandstone-on-sandstone contacts with erosional surfaces. Individual sandstone beds in the section range in thickness from 1 to 3 ft (0.3 to 0.9 m). Two main types of strata in the section consist of burrowed, upper very fine- to fine-grained sandstone dominated by Ophiomorpha and Planolites (Figs. 8A and 8B) and planar-stratified, fine-grained sandstone with Ophiomorpha burrows (Fig. 8C).

Interpretation

This sandy interval in the Shell No. 1 Garza core (Fig. 7) is composed of aggradational, upper-shoreface facies in a wave-dominated depositional setting, analogous to similar facies in the Upper Pictured Cliffs Sandstone in the San Juan Basin (Ayers et al., 1994; Ambrose and Ayers, 2007). The Upper Pictured Cliffs Sandstone records high-frequency, Late Cretaceous transgressive-regressive episodes composed of amalgamated barrier-strandplain sandstone-bodies in individual successions up to 100
ft (30 m) thick. These amalgamated sandstone bodies have a net blocky vertical grain-size profile similar to that of the overall stratigraphic succession in the Shell No. 1 Garza core, where the vertical grain-size profile is almost uniformly fine- to upper-fine-grained (Fig. 7). The Pictured Cliffs Sandstone typically has a blocky to upward-coarsening well-log response and is composed of amalgamated sandstone bodies having a composite thickness of 40 to 120 ft (12 to 36 m). It is inferred to be the framework
facies of prograding barrier-strandplain or wave-dominated delta depositional systems (Fassett and Hinds, 1971; Erpenbeck, 1979; Cumella, 1981; Flores and Erpenbeck, 1981; Cumella, 1983; Manfrino, 1984; Ambrose and Ayers, 1990; Ayers et al., 1994).

A steeply dipping, 300 ft (~90 m) section of the Pictured Cliffs Sandstone is exposed along Colorado State Highway 3 on the southeast edge of Durango, Colorado (Fig. 9A). The main portion of this continuous outcrop displays a 200 ft (60 m) succession of shelf mudstones and thin, very fine- to fine-grained sandstones in the Lewis Shale that grades upward into fine-grained, wave-dominated shoreface deposits in the Pictured Cliffs Sandstone, forming the top of the steeply dipping cliff in Fig. 9A. This section is well-documented in previous studies of the Lewis Shale to Fruitland succession, including Condon et al. (1997), Fassett (2000), and Ambrose and Ayers (2007). Individual Pictured Cliffs sandstone beds in this outcrop are typically sharp-based. Stratification is dominated by low-angle and horizontal laminations as well as large-scale, concordant and wavy bedding overlain by ripples and plane beds. Burrows are common, consisting mainly of Ophiomorpha (Fig. 9B), consistent with predominant Ophiomorpha in the Shell No. 1 Garza core (Figs. 8A, 8C, and 9B). The sets of large-scale wavy beds represent hummocky stratification recording storm events in a shoreface setting similar to that described by Dott and Bourgeois (1982). Similar successions of sandstones with scoured bases overlain by hummocky-stratified, fine-grained sandstone ~8 to 20 in (20 to 50 cm) thick, in turn overlain by ripple- to planar-laminated, bioturbated, very fine-grained sandstone are also observed in the Pictured Cliffs Sandstone by Tokar and Evans (1993). They interpret the Pictured Cliffs Sandstone south of Durango to have been deposited on a storm-dominated, sandy shelf at depths between fair-weather and storm-weather wave-base (~30 ft [~10 m]).

Shell No. 2 Muzza

A core in the Shell No. 2 Muzza well illustrates two sandy, upward-coarsening shoreface parasequences (Fig. 10). This well is located on the northwestern margin of Fandango Field, closely down dip (east) of the main bounding fault in the field (Fig. 2). The Shell No. 2 Muzza well has produced 47.1 Bcf of gas from the R and T6U reservoirs, according to Comstock Resources, Inc.

Description

The cored interval in the Shell No. 2 Muzza well extends from 15,588 to 15,640 ft (4752.4 to 4768.3 m) (Fig. 10). The section consists of two upward-coarsening intervals, the lower ranging from 15,619 to approximately 10 ft (3 m) below the base of the core, based on the GR log response 15,651 ft (4761.9 to 4771.6 m), and the upper extending from 15,588 to 15,619 ft (4752.4 to 4761.9 ft) (Fig. 10). The lower upward-coarsening interval ranges from ripple- and planar-stratified, the upper interval ranges from very fine-grained sandstone at the base to burrowed, fine-grained sandstone (Fig. 11A) to fine-grained, planar-stratified sandstone with small (2 to 4 mm diameter) clay clasts at the top. This upward-coarsening interval is overlain by a 4 ft (1.2 m) muddy section that contains millimeter- and centimeter-scale beds of contorted and sparsely burrowed, very fine-grained sandstone (Fig. 11B). The upper upward-coarsening interval above
this muddy section grades upward from very fine-grained, ripple-laminated sandstone to fine-grained, unburrowed, and planar-stratified sandstone with thin (millimeter-scale) and discontinuous lenses of muddy and organic material (Fig. 11C).

Interpretation

The Shell No. 2 Muzza core encompasses the most part of two progradational, wave-dominated, shoreface parasequences (Fig. 10). The upper 2 ft (0.6 m) of the lower parasequence is composed of upward-finining, transgressive deposits above an inferred transgressive surface of erosion at 15,620 ft (4762.2 m) (Fig. 10). This inferred transgressive surface of erosion is recognized in the Shell No. 2 Muzza core by: (1) an erosional surface overlain by mud clasts; and (2) a change in grain size from fine to fine-to-medium grained sandstone (Fig. 10).

Multiple scour surfaces at the base of planar-stratified sandstone beds in the middle and upper parts of these parasequences record intermittent periods of high-energy, longshore-drift processes that truncate burrowed beds of upper very fine- to lower fine-grained sandstone that were deposited during periods of quiescence. Similar stratigraphic architecture occurs in the Campanian Upper Pictured Cliffs Sandstone in the San Juan Basin (Ambrose and Ayers, 2007) as well as upper-offshore facies in the modern Sapelo Island, Georgia (Howard and Reineck, 1972).

Figure 9. (A) Steeply dipping outcrop along Colorado State Highway 3 southeast of Durango, Colorado, displaying the Lewis Shale in gradational contact with the overlying Pictured Cliffs Sandstone, composed of aggradational shoreface deposits in a wave-dominated depositional setting, an analog for amalgamated upper-shoreface deposits in the cored interval in the Shell No. 1 Garza well (Fig. 7). (B) Ophiomorpha burrows in the Pictured Cliffs Sandstone, with location of photograph indicated in Figure 9A.
Shell No. 3 Hinojosa

Description

The Shell No. 3 Hinojosa well is located on the southeastern margin of Fandango Field and is classified as a non-productive, water-wet well (Fig. 2). The cored interval, which is at the top of a thick (≥140 ft [≥43 m]) section with a complex GR response (upward-coarsening to serrate), is an upward-coarsening section that ranges from upper very fine-grained sandstone at the base to fine-grained sandstone at the top (Fig. 12). Stratification in the

Figure 10. Core description and reservoir quality (permeability and porosity) data for the Shell No. 2 Muzza well from 15,588.0 to 15,640.0 ft (4752.4 to 4768.3 m) in Fandango Field, Zapata County. Location of well is shown in Figure 2.
lower 10 ft (3 m) of the section is dominated by low-angle planar
bedsets with rare vertical escape burrows (Fig. 13A), whereas the
upper 40 ft (12 m) contains either horizontal to low-angle in-
clined planar stratification, crossbedding, and massive bedding
(Fig. 13B). The section also contains numerous, subtle scour
surfaces that separate smaller sections ranging in thickness from
3 to 10 ft (1.5 to 4.5 m) (Fig. 12).

Interpretation

This cored interval in the Shell No. 3 Hinojosa well consists
of a lower, 10 ft (3 m) section of very fine- to fine-grained s an-
dstone in inner-shelf facies dominated by zones of swaley stratifi-
cation (Fig. 13A). In contrast, the upper 20 ft (6 m) of the cored
interval is composed of fine-grained, massive to faintly planar-
stratified sandstone recording upper-shoreface deposits (Figs. 12
and 13B). High wave energy in the upper one-third of the cored
section is inferred from the amalgamated succession of multiple,
3 to 10 ft (1.5 to 4.5 m) erosion-based zones, planar-stratified
and crossbedded sandstone beds. This type of stratification is
common in wave-dominated successions that record multiple
episodes of sediment transport by longshore drift and welding of
beach-ridge deposits (Pilkey and Davis, 1987; Walker and Plint,
1992). Modern depositional analogs include prograding beach-
ridge deposits in Kiawah Island in South Carolina (Barwis, 1976)
and progradational barrier-island deposits in Galveston Island in
Texas, where the upper 10 to 16 ft (3 to 5 m) consists of unbur-
rowed, cross-stratified and planar-stratified, fine-grained sand
(Bernard et al., 1962; Davies et al., 1971).

RESERVOIR QUALITY

Crossplots of grain size, expressed in terms of ϕ units, ver-
sus permeability and porosity, indicate that facies origin is a poor
predictor or reservoir quality in the upper Wilcox succession in
Fandango Field. Crossplots of grain size versus both permeabil-
ity and porosity data from all data points in this study, have coef-
ficient of determination (R²) values of 0.3276 and 0.4696, respec-
tively (Figs. 14A and 14B, respectively). The distribution of
permeability values for all data points displays a large popula
tion of low permeability values <10 md (266 data points) and a small
population (20 data points) for values >10 md (Fig. 14A). In
contrast, the distribution of porosity values for all data points is
less skewed than that for permeability values. It is associated
with a less-steep, best-fit trend line for relatively low values in
comparison with the best-fit trendline for permeability values
(Fig. 14B).

Crossplots of grain size versus permeability and porosity for
individual facies (lower shoreface, middle shoreface, upper
shoreface, and transgressive deposits) display great differences in
terms of distribution of permeability and porosity values, R² val-
ues and geometry of trend lines (Figs. 15–18). Among these four
facies types, transgressive deposits exhibit the highest R² values
(0.9261 and 0.6792 for grain size versus permeability and porosi-
ty [Figs. 18A and 18B, respectively]), although only nine data points represented transgressive deposits in the data set. Low R^2 values (<0.350) are associated with crossplots of grain size versus both permeability and porosity in lower-shoreface facies (Figs. 15A and 15B, respectively), grain size versus porosity in middle-shoreface facies (Fig. 16B), and grain size versus permeability for middle-shoreface facies (Fig. 16A). Although poor correlations exist between grain size and reservoir quality for these facies, differences in range and average values in reservoir quality do occur between some facies.

Table: Grain Size and Sedimentary Structures

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Comments</th>
<th>Rock type</th>
<th>K (md)</th>
<th>Φ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18120</td>
<td>SHELL No. 3 Hinojosa</td>
<td>Gravel</td>
<td>10 1 0 0.1</td>
<td>20 15 10 5</td>
</tr>
</tbody>
</table>

Figure 12. Core description and reservoir quality (permeability and porosity) data for the Shell No. 3 Hinojosa well from 18,120 to 18,171.5 ft (5524.4 to 5540.1 m). Location of well is shown in Figure 2.
Relatively high values of average porosity (14.21 to 16.50%) occur in proximal-shoreline depositional systems, whereas lower values (<9%) are within muddy distal-marine depositional systems (Table 2). Likewise, greater values of permeability are within nearshore/proximal-shoreline depositional systems, with average values of 3.555 and 2.804 md in upper-shoreface/proximal-delta-front and transgressive deposits, respectively (Table 3). In contrast, average permeability values are much lower (<0.400 md) in offshore/distal-shoreline depositional systems, with low values (average 0.140 md) in lower-shoreface/distal-delta-front facies. Although average values of permeability are comparable in upper-shoreface/proximal-delta-front and transgressive deposits, these facies differ greatly in terms of their highest values (85 versus 18 md) (Table 3).

Variations in porosity and permeability occur within the transition from lower- to upper-shoreface facies in some cores, whereas in other cores these relationships are poor. For example, in the Shell No. 1 Garza core, the greatest values of porosity and permeability occur near the top of two upward-coarsening successions, where values are as much as 22.5% and 20 md, respec-

Figure 13. Photographs of shelf overlain by upper-shoreface facies from the Shell No. 3 Hinojosa well. (A) Low-angle swaley stratification and vertical escape burrow (Teichichnus) in very fine- to fine-grained sandstone at 18,162.6 ft (5537.4 m). Swaley stratification indicates deposition between fair weather and storm wave base in inner-shelf setting. (B) Massively bedded, fine-grained sandstone at 18,128.0 ft (5526.8 m) in upper-shoreface setting. Core description is shown in Figure 12.
tively (Fig. 10). Likewise, a slight upward increase in permeability values (although all values are <0.1 md) and porosity values (5.5 to 7.0%) occurs in lower-shoreface facies from 15,609 to 15,615 ft (4758.8 to 4760.7 m) in the Shell No. 2 Muzza well (Fig. 10). In addition, the transition from middle- to upper-shoreface facies in the Shell No. 1 Muzza core corresponds with a minor increase in permeability values from slightly >1 md to almost 10 md (Fig. 5). However, no corresponding upward increase in porosity values occurs in the same interval. Abundant permeability and porosity data in the Shell No. 1 Garza core indicate little net variation in reservoir quality over the entire cored succession, although subtle trends of upward-increasing and upward-decreasing values occur within smaller (5 to 20 ft [1.5 to 6 m]) intervals (Fig. 7). This interval in the Shell No. 3 Hinojosa well contains porosity data for the entire interval and permeability data from the upper 60% (Fig. 12). These data indicate an upward increase in porosity values from approximately 3 to 13% over the transition from inner-shelf to upper-shoreface facies, although permeability data are absent for the lower 20 ft (6 m).

CONCLUSIONS

This study presents a wave-dominated, microtidal (diurnal tidal range <6.6 ft [<2 m]) interpretation for the deeply-buried (>13,000 ft [>3960 m]) upper Wilcox Group in Fandango Field, based on presence of wavy, symmetrical ripples coupled with the absence of features that are common in tidally-modified or tide-dominated settings such as rhythmic stratification, lenticular
beds, flaser ripples, and double-draped ripples. Modern deposi-
tional analogs for the upper Wilcox Group in Fandango Field
include the wave-dominated Santee Delta and Cape Romain in
South Carolina, whereas upper-shoreface and wave-dominated
deltaic deposits in the upper Cretaceous (Campanian) Pictured
Cliffs Sandstone in the San Juan Basin in New Mexico and Colo-
rado serve as an ancient facies analog.

Crossplots of grain size versus porosity and permeability for
the total dataset of 347 plugs from whole core indicate that grain
size, and facies origin to a lesser extent, are poor predictors
of reservoir quality (defined as porosity and permeability) in the
upper Wilcox succession in Fandango Field. However, minor
variation in reservoir quality exists between different shoreface
and wave-dominated deltaic facies. Optimal reservoir quality
occurs in sandy upper-shoreface/proximal-delta-front facies and
transgressive deposits in Fandango Field. Relatively high values
of average porosity (14.2 to 16.5%) occur in amalgamated, fine-
grained sandstone beds in upper-shoreface/proximal-delta-front
facies, whereas lower values (<9%) are prevalent in lower-
shoreface/distal-delta-front facies. Similarly, greater values of
permeability occur within upper-shoreface/proximal-delta-front
and transgressive deposits, with average values of 3.56 and 2.80
md in upper-shoreface/proximal-delta-front and transgressive
deposits, respectively. In contrast, average permeability values
are much lower (0.14 md) in lower-shoreface/distal-delta-front
facies.

This study shows that grain size and facies variability in the
upper Wilcox succession in Fandango Field are poor indicators
of reservoir quality. Although minor variation in range and aver-
age values of permeability and porosity exists between facies in

Figure 15. Grain size (φ units) versus reservoir-quality data for lower-shoreface facies. (A) Permeability and (B) Porosity.
Fandango Field, other factors such as diagenesis may control reservoir quality and should also be considered in reservoir development in neighboring Wilcox fields in South Texas.

ACKNOWLEDGMENTS

This study was funded by the Deep Shelf Gas Consortium at the Bureau of Economic Geology, University of Texas at Austin. Production data and structure map of Fandango Field were provided by Comstock Resources, Inc. The manuscript benefitted from the reviews of Erin Meyers and Tom Dunn. Francine Mastrangelo and Anastasio Grebnova prepared the illustrations under the direction of Cathy Brown, Manager, Media Information Technology. Publication authorized by the Director, Bureau of Economic Geology.

REFERENCES CITED

Figure 17. Grain size (ϕ units) versus reservoir-quality data for upper-shoreface facies. (A) Permeability and (B) Porosity.

Ayers, W. B., Jr., W. A. Ambrose, and J. S. Yeh, 1994, Coalbed methane in the Fruitland Formation, San Juan Basin: Depo-

Figure 18. Grain size (φ units) versus reservoir-quality data for transgressive deposits. (A) Permeability and (B) Porosity.

Curray, J. R., F. J. Emmel, and P. J. S. Crampton, 1969, Holocene history of a strand plain, lagoonal coast, Nayarit, Mexico, in A. A. Castanares and F. B. Phleger, eds., Coastal lagoons:
A symposium:

Universidad Nacional Autonoma, Mexico City, p. 63–100.

Kumar, N., and J. E. Sanders, 1976, Inlet sequence: A vertical succession of sedimentary structures and textures created by the lateral migration of tidal inlets: Sedimentology, v. 21, p. 491–532.

