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ABSTRACT 
Petroleum geologists have knowledgeably and successfully applied geostatistics and other analytical tools for decades as 

one of their many skill sets.  Geologists’ knowledge and practiced, successful implementation and use of these tools have them 
well placed for involvement in current oil and gas industry transformation into the broader use of analytics, machine learning, 
and AI (artificial or augmented intelligence). 

This example of the Rodessa Oil Pool, Martinville Field, Simpson County, Mississippi, provides insight into the use of de-
scriptive statistics to advance geologic insight and discovery using machine learning to define and distinguish separate reservoir 
productivity when completed in non-segmented multiple reservoirs and from multiple wells.  This smaller, well-controlled da-
taset provides an excellent example of and learning set for the powerful discovery using descriptive statistics and the predictive 
strength of simple, more advanced analytic methodologies. 

The statistical models are defined and tested using standard, normal statistics, sample sets, replacement in this case and 
addition of new data, and review of the validity of the models developed.  These tools and methodologies are consistent with 
current practice in petroleum geology.  Discovery of variables and integration of multidisciplinary research will continue to 
take an ever-increasing role in the work and practice of petroleum geologists. 
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INTRODUCTION 
Geologists have successfully applied geostatistics and other 

analytical tools for decades.  The current oil and gas industry 
transformation into the broader use of analytics, machine learn-
ing, AI (artificial or augmented intelligence) varies only in con-
sistency of application and scope.  Petroleum geologists who 
have this long history of successful use of analytical tools are 
well suited to be part of the analytical revolution or transfor-
mation occurring as part of their own work, within their own 
firms, and throughout the oil and gas industry. 

Geologists have recognized statistics and analytics for what 
they most truly are, a tool.  This is just one tool available for use 
in specific projects or programs to enhance understanding and 
communication of concepts for that project, program, or study.  It 
is not universally applicable or available for academic or applied 
research or for communication of concepts. 

Analytics is the discovery, interpretation, and communica-
tion of meaningful patterns in data and predictive models.  This 
includes the evaluation, synthesis, integration of disorganized or 
complex data, patterns of data, and interpretations typically from 
multidisciplinary sources and effectively communicating them 
into meaningful patterns or results often as predictive models. 
These, similar steps, and processes are familiar to the petroleum 
geologist who accomplishes these steps and processes continu-
ously. 

The current firm and industry-wide universal application of 
analytics is being heralded as a needed transformational event in 
the oil and gas, other industries, and is being pushed down by 
boards and senior management throughout the oil and gas indus-
try.  However firm-wide, early adoption and practice has resulted 
in a 70–90% failure rate (Overby, 2020; Sood and Coxon, 2020; 
Taylor, 2020; Bagchi, 2020; Kesari, 2019; Freedman, 2019; Ben-
dor-Samuel, 2019; Stuchfield, 2019; Hinchcliffe, 2018; Walker, 
2017).  Why do these corporate transformational events such as 
adoption of analytics have such a high failure rate?   The refer-
enced research provides many reasons which can best be summa-
rized by petroleum geologist Andrew Silver’s Venn diagram 
(Silver, 2019) (Fig. 1).   

This Venn diagram brings together three parts of the analyti-
cal team.  The analyst (math and statistics) in the upper right, 
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programmer in the upper left, and below domain expert 
(geologist, engineers, economist, and landman).  The overlap 
between the analyst and domain expert is the white box area 
where we want to be.  White boxes are analytical solutions,    
statistical models, which are understood and applicable by both 
analyst and domain expert.  The machine learning overlap be-
tween the analyst and programmer marginal to or excluding       
domain experts are often black boxes.  In Figure 1, those can be 
non-parametric or non-standard statistical analyses (Hoskin, 
2012).  These analyses should be or need to be easily explained 
to the knowledgeable and practiced domain expert but often are 
not.  Not all analytical processes or models developed in this      
non-intersecting area of this Venn diagram are universally appli-
cable or useable models for all experts represented by the dia-
gram.  These models may not have been satisfactorily explained 
by programmers and data scientists, may be poorly understood 
solutions, may not be practical for subsequent use by others, or 
may not be repeatable scientific solutions and by definition, are 
not science.  As Albert Einstein explained “all physical theories, 
their mathematical expressions apart, ought to lend themselves to 
so simple a description ‘that even a child could understand 
them.’” (Clark, 1971). 

In the universe of Figure 1, analytics are a useful tool.  How-
ever, they are not universally applicable.  There are applications 
when analytical tools are beneficial in explanation and communi-
cation; there are many when they are not.  It is up to the team of 
knowledgeable and practiced domain experts, data scientists, and 
programmers to distinguish and communicate the applicability or 
non-applicability of the tool.  To expect that analytics, machine 
learning, or AI is the only approach, the universal key, and useful 
tool in every application and for every project, universally 
throughout organizations or an industry, is unrealistic.  

If one combines the programmer with the analyst in the up-
per right-hand portion of the Venn diagram, the multiple factors 
that have made the analytical transformation so unsuccessful can 
be explained.  The upper left population will now represent man-
agement.  In this model, the best analytical models are developed 
in the overlap among manager, analyst, and domain expert.  
Again, the failure of one of the three results in failure of the pro-
cess.  Why?  The more the domain expert understands, works 
with and practices analytics the greater the overlap in the Venn 

diagram with the analyst.  The more the analyst works with do-
main experts and takes time to understand their work and varia-
bles of their domain, the greater the analyst’s circle will overlap 
with the domain expert’s.  Both the domain expert and analytic 
sciences include analytical disciplines and backgrounds so there 
is great potential for significant overlap in the data science and 
domain experts area of expertise. 

That leaves management.  In many organizations the analyti-
cal transformation throughout the industry is being charged from 
upper management and Boards that have observed the use of 
analytics in other industries.  They may be pushing the technical 
tool down into groups managed by individuals with domain ex-
pertise but no longer functioning in those roles.  Many of these 
managers have not incorporated analytics into their own previous 
work and in practice are unlikely to successfully integrate both 
the domain expertise, analyst, and the common Venn diagram 
intersections and overlap between these two groups, and them-
selves, as managers.   

In these cases, regardless of how much overlap exists be-
tween the domain expert and analyst, there is little to no overlap 
with management and the analytical transformation will fail.  
Organizations should seek management with proven expertise 
with these processes, practice, and methodologies or make sure 
management gains the training, knowledge, and experience to 
increase the overlap with domain experts and analysts in data 
science, the center of Figure 1.  There are cases when analytics 
will not be applicable.  In those cases, other domain expert’s 
tools are likely more applicable to project and company success.  
The transformation will not be universal.  These observations and 
understanding will assist in making analytics, machine learning, 
and AI more successful. 

 
ANALYTICS FOR THE INDEPENDENT            

GEOLOGIST AND INDEPENDENT                    
OIL & GAS FIRM 

The more advanced analytic models, machine learning, and 
AI tools and application are achievable for knowledgeable and 
practiced domain experts trained in most geologic and engineer-
ing disciplines.  In fact the logic of the domain expert and even 
simple analytical models often provide superior results that are, 

Figure 1.  Potential analytical 
team interactions and perfor-
mance (Silver, 2019). 
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white boxes.  More sophisticated, more advanced pure mathemat-
ical, statistical, and programing skill models developed only by 
data scientists and programmers may be black boxes. 

In this study we will examine the use of just a few simple 
analytic variables and models as one of the tools used by domain 
experts to enhance the interpretation of a small project and prob-
lem.  The goals are:  

(1)  Many mathematical and statistical experts and firms are 
attempting to penetrate the oil and gas industry and firms 
but with little to no industry expertise with successful 
application.  Successful application is applied and shown 
here in a real-world solution.   

(2)  These variables and models do not need to be extensive or 
complex to come up with superior results to models and 
solutions which when used during interactive project de-
velopment can assist in the discovery, interpretation, and 
communication of multidisciplinary and intangible con-
cepts.   

(3)  Finally, most of the observations, variables, and statistical 
models are within the grasp of most petroleum geologist 
and Independent oil and gas firms.  Practical, successful 
use and application will assist others in obtaining similar 
superior results using these analytical tools.   

Why do petroleum geologists need to be involved profes-
sionally and personally with analytics, machine learning, and AI?  
As stated by the Wall Street Journal (2017), the future in the 
Global Economy “it will soon be a matter of those who can and 
those who cannot.” 

 
THE EXAMPLE:  RODESSA OIL POOL,                 

MARTINVILLE FIELD, SIMPSON COUNTY,   
MISSISSIPPI 

Martinville Field 
Martinville Field, northeastern Simpson County, Mississip-

pi, is located along the northern margin of the Mississippi Salt 
Basin (Fig. 2).  This northern margin of the Mississippi Salt Ba-
sin is also known as the Lower Cretaceous (Hauterivian, 
Barremian, Aptian, and Albian) production trend (Fig. 3). 

 
Field Discovery 

After disappointing drilling and production results from 
Lower Cretaceous reservoirs along the northern flank of the Mis-
sissippi Salt Basin through the 1940s (Forgotson, 1963) into the 
early 1950s (Nunnally, 1954), the Bolton Field (cumulative pro-
duction of 6.1 million barrels of oil (MMBO) and 12.3 billion 
cubic ft of gas (BCFG) through 2017 (Mississippi Oil and Gas 
Board, 2020) was discovered 15 mi west of Jackson, Mississippi, 
in 1954 (Frascogna, 1957; Davis, 1963).  The discovery well was 
drilled and completed in the Paluxy during July with the deeper 
Rodessa added during December as the confirmation well.   

The next year, 1955, the Citronelle, Rodessa, Oil Field was 
discovered (Eaves, 1976) in the eastern Mississippi Salt Basin in 
southwestern Alabama.  Citronelle has produced 175 MMBO and 
16.0 BCFG through the end of 2019 (Geological Survey of Ala-
bama, 2020).  Citronelle Salt Dome forms a topographic high, 
which led to the drilling of two shallow, dry wells.  These wells 
confirmed the subsurface structure which lead to the drilling of 
the discovery well drilled deeper into the Rodessa (Eaves, 1976).  
These two new field discoveries, Bolton and Citronelle, defined 
the Lower Cretaceous play potential and target areas.  Martinville 
is located near the center of the Lower Cretaceous play on the 
northern flank of the Mississippi Salt Basin (Fig. 2B); Bolton 
Field is 48 mi northwest and the Citronelle Field is 110 mi south-
east.   

Using regional gravity data to identify gravity lows (salt 
ridges and salt domes, thick salt formed from diapiric movement) 

and gravity residual mapping to identify “the location of the 
highest and/or the thickest salt mass” (Karges, 1968) companies 
shot seismic data to confirm and drill multiple new field discov-
eries in the Lower Cretaceous Mississippi Salt Basin play (Davis, 
1963; Frascogna, 1957) from the mid-1950s (Philpott, 1960) into 
the 1960s. 

In February of 1957, the Martinville Field discovery well, 
the Central Oil Company #1 Jennings was drilled and tested 246 
barrels of oil per day (BOPD) in the Sligo.  In this case, the pro-
spect was defined by subsurface mapping (Davies, 1963), similar 
to the Citronelle discovery.  In November 1957, the Hosston was 
completed in the Central Oil Company #1 Sullivan flowing at 
259 BOPD and the Rodessa was added in January 1958 in the 
Gulf Oil #2 Sullivan well.  The field has produced just over 10 
MMBO and 2.8 BCFG with the Rodessa in the northeast fault 
block being the most productive horizon producing 3.7 million 
barrels of oil equivalent (MMBOE) or 36% of the field total.  
Lower Cretaceous production has been established in the Martin-
ville Field from Washita-Fredericksburg, Paluxy, Mooringsport, 
Rodessa, Sligo, and Hosston, the complete suite of Lower Creta-
ceous traditional reservoir horizons.  The only non-producing 
Lower Cretaceous formations are the Ferry Lake Anhydrite and 
Pine Island Shale (Fig. 3), immediately above and below the 
Rodessa, respectfully. 

 
Structural Trap 

Martinville Field is a faulted, salt anticline with four-way 
closure (Fig. 4A).  The salt dome is non-piercement at least 
through the Lower Cretaceous stratigraphic units.  The majority 
of the production is from the high-side, two-way fault closure 
and two-way dip closure, northeastern fault block.  The west-
southwestern and southern fault block are identified as South-
western Martinville Field or by separate pool names (Mississippi 
Oil and Gas Board, 2020), all part of the single salt dome, struc-
ture, and structural origin. 

 
Rodessa Formation Reservoir 

The Rodessa Formation is 470–520 ft thick in the Martin-
ville Field (Fig. 5).  The best developed sandstone facies have 
well-developed, bell-shaped spontaneous potential (SP) log sig-
nature.  Core from the Continental Oil Company #1 Central Oil 
Company drilled in 1955 (northernmost well in the northeastern, 
upthrown fault block [Figs. 4A, 4B, and 5], a dry hole that may 
have been a missed discovery well for the field and helped set up 
the interpretation for the discovery well) was cut and recovered 
through most of the Ferry Lake Anhydrite, Rodessa, Pine Island, 
Sligo, and Hosston.  Like descriptions of the Rodessa in Citron-
elle Field (Esposito et al., 2008), the sandstones have intraclastic 
conglomeritic bases, grading upward into white to light-gray 
coarse to medium grain sandstones to finer grained, darker-gray 
sandstones into red-brown and darker gray and black mudstones.  
These red-brown mudstones frequently have slickensides noted 
throughout and the darker shales are occasionally interbedded 
with coal.  Fossils are noted in the finer grained mostly upper 
Rodessa darker-gray sandstone and mudstones and there is mica 
throughout the section regardless of grain size.  Better developed, 
thicker, higher SP response, higher porosity (core description and 
sidewall core laboratory measurements) are in the lower half.  
The upper half appears finer grained, with lower and less distinc-
tive SP response and tighter porosity (core descriptions and side-
wall core laboratory measurements).  The gross sandstone iso-
pach and isopach maps of individual layers (defined later) are 
north-south oriented sandstones similar to the Rodessa descrip-
tions at Pelahatchie Field, 22 mi to the north (Karges, 1968; 
Petkovsek, 2019).  

The Rodessa sandstone reservoirs are interpreted to be             
generally north-south oriented fluvial-deltaic channel complexes 



Figure 2.  Martinville Field is located in northeastern Simpson County, Mississippi.  Figure 2A modified after Champlin (2000) on 
the northern margin of the Mississippi Salt Basin; and Figure 2B modified after Merrill (2016).   
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in the lower half and distributary channel and littoral environ-
ments in the upper half.  The mudstones were deposited in levee, 
flood-plain and bay environments.  The slickensides in the red-
dish-brown mudstones at the top of the fining-upward sequences 
are likely of pedogenic origin (Fig. 6).  The mica rich mineral 
assemblages likely indicate a southern Appalachian highland 
source draining into the relatively stable northern margin of the 
Mississippi Salt Basin (Mancini, 2012; McFarland and Menes, 
1991; Forgotsen, 1963).  The channelized sandstone forms an 
anastomosing reservoir system likely forming continuous and 
non-continuous reservoirs, vertically and horizontally (Pashin, 
2013). 

Individual sandstone channels or channel systems are thicker 
and higher quality reservoir in the lower Rodessa.  The channel-
ized sandstones generally thin upward and basinward away from 
the sediment source and supply with the entire section continuing 
to thicken to the south in the accommodation zone of the subsid-
ing Salt Basin, a basinward thickening interval (Forgotson, 
1963).  Deeper into the basin, lower energy, environments were 
present.  There finer grained, darker, pelagic shales (McFarland 
and Menes, 1991) eventually becoming carbonate rich, the lateral 
equivalent to the lower Glen Rose in East Texas and upper James 
Limestone in the East Texas and Louisiana salt basins (Merrill, 
2016; McFarland and Menes, 1991; Devery, 1982; Nunnally and 
Fowler, 1954).  The upper sequences are finer grained, have a 
decreased, siliciclastic sediment supply resulting “in the spread 
of an epineritic biostromal environment over most of the shelf 

area basinward of the near-shore” siliciclastic facies (Forgotson, 
1963).  

In the Martinville Field, 6 genetic fining upward sequences 
were recognized and correlated throughout the field (Fig. 5).  
These fining upward sequences range from 45 to 120 ft thick.  
Again, generally, with thicker individual sandstone units with 
better quality reservoir at the base and updip becoming thinner 
and lower quality reservoir upsection (Fig. 6) and into the basin. 

 
Seal 

Biohermal carbonate facies that developed basinward of    
the upper Rodessa sequences eventually formed the restriction 
necessary for the formation of calcium sulfate, deposited as    
gypsum.  Early anhydrite stringers are interbedded with the upper 
Rodessa basinward of Martinville Field eventually becoming 
more continuous as a separate formation, the Ferry Lake Anhy-
drite, sealing the Rodessa.  The anhydrite was deposited on the 
seaward, slightly less stable, platform that accommodated deposi-
tion of thick gypsum layers.  This restricted environment never 
gained the salinity high enough for the deposition of salt.  With 
burial compaction pressure, the gypsum was altered to anhydrite 
(Forgotson, 1963) forming an excellent seal for Lower Creta-
ceous (Aptian) reservoirs.  The base of the Ferry Lake Anhy-
drite / top of the Rodessa is an excellent local and regional map-
ping horizon and “a regionally valid time-rock unit representing 
contemporaneous deposition” (Forgotson, 1963). 

Figure 3.  Stratigraphic column for the Lower Cretaceous in the U. S. Gulf Coast region (from Merrill, 2016, courtesy of the U.S. 
Geological Survey).  The figure is based on the American Association of Petroleum Geologists (2002) Gulf Coast regional corre-
lation chart, and modified with information from Ambrose et al. (2009); Anderson (1980, 1989); Chenault and Lambert (2005); 
Mancini et al. (2008); Salvador (1991); Salvador and Quezada Muñeton (1991); Smith et al. (2000); and Zahm et al. (1995).   
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Source and Migration 
There are multiple source rocks throughout the stratigraphic 

section of the Gulf Coast Mesozoic interior salt basins (East Tex-
as, Louisiana, and Mississippi).  The majority of those are locally 
or play specific source units with the lower and middle mud-
stones of the Upper Jurassic Smackover Formation being the 
only regionally significant source rocks within each of these inte-
rior salt basins (Merrill, 2016; Mancini et al., 2012, 2008, 2005; 
Wescott and Hood, 1994; Claypool and Mancini, 1989; Sassen et 
al., 1987; Oehler, 1984).  The Upper Cretaceous is only buried 
deep enough to generate sufficient hydrocarbons in the very 
southern portions of the East Texas and Mississippi salt basins 
and the Lower Tertiary is only buried deep enough to generate 
hydrocarbons in the southern Louisiana Salt Basin (Fig. 7).  
Mancini (2012) also documented a higher geothermal gradient in 
the Louisiana Salt Basin compared to the Mississippi Salt Basin 
associated with Cretaceous volcanic emplaced during extension.  
Similar volcanic rocks, timing, and genesis have been document-
ed in the Realfoot Aulacogen and South Texas.  Chemical anal-
yses of the Smackover source, intra-formational Smackover oils 
mostly found in the upper Smackover, and many of the hydrocar-

bons in Cretaceous reservoirs that have been typed and are deter-
mined to have been derived from the lower and middle Smacko-
ver mudstones (Mancicni, 2012).   

In the Martinville Field area, the Smackover source rocks 
started generating oil during mid-Albian (Figs. 8B and 9) likely 
after deposition of the Paluxy.  Although migration would have 
occurred slightly later likely during the Late Cretaceous (Fig. 
8C).  Wescott and Hood (1994) studied the migration of these 
hydrocarbons in East Texas and Evans (1987) in Mississippi 
evaluated vertical migration processes under pressure with and 
without faulting.  Under those processes, most traps fill a single 
reservoir.  Migration under pressure occurs until that pressure is 
relieved in a normal pressure environment.  When this normal 
pressure environment is found by the migrating hydrocarbons it 
remains in this single, higher porosity, higher permeability reser-
voir compared to the source, carrier beds, or faults under pres-
sure.  

Evans (1987) also noted in the Mississippi Mesozoic Salt 
Basin that a few, the largest fields, have multiple stacked reser-
voirs.  Each of these have well documented faults through the 
hydrocarbon reservoir units that continue down to the Smackover 
providing a migration highway for the hydrocarbons generated in 

Figure 4.  Structure maps on the Base Ferry Lake Anhydrite / Top Rodessa Formation.  Figure 4A modified after Davis, (1963); 
and Figure 4B modified after Fairhurst (1996) with 2017 revisions.  One mile section boundaries provide horizontal scale.  Cross 
section A–A’ is shown in Figure 5.   
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the lower and middle Smackover (Sassen et al., 1987).  Martin-
ville Field is an example, in this case, a salt-cored, faulted anticli-
nal trap with vertical migration through a significantly thick Up-
per Jurassic and Lower Cretaceous section into multiple Lower 
Cretaceous hydrocarbon reservoirs along the fault surface. 

 
APPLICATION OF GEOLOGICAL                      

INTERPRETATION SUPPORTED BY                
ANALYTICAL DESCRIPTION, MACHINE 

LEARNING, AND AI FOR THE RODESSA OIL 
POOL, MARTINVILLE FIELD 

Background 
During December 1995, Coho Resources petitioned the State 

Oil and Gas Board of Mississippi to unitize the Martinville Field 
and Southwestern Martinville, Rodessa into a single unit.  At that 
time, Coho was producing from and controlled individual 40 ac 
HBP (held by production) units in the southern two-thirds of the 
northeastern Martinville Field (Fig. 4), multiple units in the 
Southwestern Martinville Field and two other operators 
(Marathon Oil Company and Sklar & Phillips) held two HBP 40 
ac units in the northern third of the northeastern Martinville Field 

(see Marathon [TXO] Kennedy 23–2 [subsea elevation, -11,130 
ft] and Sklar & Phillips Kenedy 14–15 #1 [subsea elevation,         
-11,154 ft] in the northern portion of Figure 4B).   

The participation formula presented by Coho used 5 varia-
bles, four engineering variables; cumulative production from 
each tract (Fig. 10A), 25% weight, current production (Fig. 10B), 
10% weight, estimated remaining reserves (Fig. 10C), 35% 
weight, and useable wellbores in each tract (25% weight) and one 
land variable; surface acreage, 5% weight (Coho, 1995).  There 
were no scientific—engineering, geological, or mathematical/
statistical/analytical—justifications for the variables or weights 
and no recognition of the geology or reservoir characteristics of 
the Rodessa.  However, the faulting and separation as mapped 
(Fig. 4) was accepted and known. 

The tract participation would give Coho in the southern two-
thirds of the northeastern fault block in the Martinville Field, 
79.9% interest, and the other companies in the northern one-third 
of the productive fault block, 20.1% interest. 

 
Research Question 

The focus was on the development, future production, and 
value of the northeastern fault block, Martinville Field, Rodessa 

Figure 5.  Stratigraphic cross section A–A’, flattened on the base of the Ferry Lake Anhydrite / top of the Rodessa.  Line of cross 
section through the Martinville Field shown in Figure 4B.  Ferry Lake Anhydrite pinches out between the Martinville Field and 
Pelahatchie Field, 22 mi to the north (McFarlan and Menes, 1991; Forgotson, 1963).  The Rodessa in Martinville was divided into 
6 fining-upward genetic sequences that have thicker and higher quality reservoirs at the base and updip in the Pelahatchie 
Field.   
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Oil Pool and each 40 ac tract.  The research question for geology, 
because the Rodessa in the northeast fault block was treated as a 
single reservoir, was there any way to define and communicate 
the potential for each 40 ac unit and one-third portions of the 
northeastern Martinville Field separately and differently than the 
single reservoir model using available data and information? 

 
Geological Interpretation 

Plotting the perforated intervals for each of the Rodessa 
producing wells in the northeastern Martinville Field fault block, 
it is observed that the most wells produced from sequence 3 
through sequence 6 (Fig. 5) with only minor contribution from 
the upper sandstone in sequence 2 at the structurally highest por-
tion of the northeastern fault block.  Even though sequences 1 
and 2 typically have some of the better developed and thickest, 
high-quality reservoir sandstone.  All indications are that these 
sequences (1 and 2) are water wet.  In sequences 1 and 2, the 
deep resistivity is lower with a negative deflection but has good 
separation between the intermediate and deep resistivity indicat-
ing a high-porosity and permeability sandstone reservoir.  Well 
reports show no perforations were attempted in sequence 1, indi-
cating the high-quality sandstone reservoir is water wet as is most 
of sequence 2.  Recent data and interpretations of the Pelahathie 
Field (Fig. 6 and Petkovsek, 2019) also show a negative deflec-

tion in the deep resistivity and no reported production from se-
quence 1 in that field.  The reported production from the Rodessa 
in the Pelachatchie occurs in sequences 2–4 (Petkovsek, 2019). 

The amount of missing section measured in the wellbores 
along fault A (Fig. 4B) is approximately 400 ft and less along 
fault B.  These are less than the thickness of the Rodessa for-
mation (Fig. 5).  It is likely that upper Rodessa sequences            
3 through 6 on the upthrown fault block are trapped against the 
Ferry Lake Anhydrite and overlying lower Mooringsport Shale 
on the downthrown side of faults A and B.  That juxtaposition 
forms an effective lateral seal.  Rodessa sequences 1 and 2 (the 
thickest and highest-quality sandstone reservoirs) on the up-
thrown side are likely laterally offset to the upper Rodessa on the 
downthrown side, which likely formed an ineffective lateral seal 
for these sequences and reason sequences 1 and 2 are water-wet 
and non-productive.   

A structure map (Fig. 4B) was constructed using the inter-
sections of the fault surface maps with the upthrown and down-
thrown base of the Ferry Lake Anhydrite / top of the Rodessa 
surface.  The width of each fault mapped, measured parallel to 
the fault dip direction, corresponds to fault heave  (Subsurface 
Consultants & Associates, Inc., 1993; Tearpock et al., 1991).  

Total net productive Rodessa sandstone in sequences 3–6 
was interpreted from the available open-hole SP / resistivity logs 
in the northeastern fault block (Fig. 11A).  This map is a statisti-

Figure 6.  16–2 sand, well B–19–10 #2.  Pedogenic slickensides from Rodessa core in Citronelle Field (modified after Pashin, 
2013).  

100 Bill Fairhurst 



cal interpretation using Geographix software to eliminate inter-
preter bias and hand smoothed to eliminate some obvious con-
touring errors and statistical inaccuracies between datapoint and 
the statistical interval thickness mapped.  Note that not all meas-
ured datapoints agree with the isopach contours (uncorrected 
statistical interpretation) but the interpretation provides a reason-
able model of total Rodessa sandstone reservoir quality thick-
ness.  

Understanding the regional depositional setting, sedimento-
logical process, facies, and intra-formational fining-upward depo-
sitional sequences as presented in Figure 5, were used to assist in 
interpretation of the productive net sandstone isopach maps for 
sequence 3 through sequence 6 (Figs. 11B–11E).  The individual 
sequence isopachs created in 1996 (shown in black and white) 
were statistical interpretations using Geographix software then 
hand corrected to individual datapoint measurements.  The revi-
sions (color contours) were recreated in 2020 to include the addi-
tional well and subsurface data interpretations for the Smith 23–6 
#2 well drilled and completed in late 1996.  The location of the 
Smith 23–6 #3 well is found in the color contours of Figures  
11B–11E; however, it is best identified in Figure 18C.  These 
interpretations (color isopach maps, Fig. 11) were created using 

Petra software and are not hand corrected other than partial defi-
nition of several zero contour placements. 

These standard geologic measurements and interpretations 
(Figures 4B and 11) by themselves do not provide any discern-
ment of individual sandstone reservoir productivity.  However, it 
was observed that sequence 3 appeared vertically thickest in the 
better, higher rate and higher cumulative, productive wells.  This 
observation lead to investigation of the porosity-permeability 
relationships measured by sidewall cores (Fig. 12).  The regres-
sion model between permeability and porosity is statistically 
valid at the 99% confidence interval (Snedecor, 1946).  There are 
two clouds of data measurements with slightly high and low ob-
servations outlined in red in Figure 12.  These were observed to 
be dominantly sequence 3 datapoints. 

Separating permeability and porosity measurements by se-
quence (Fig. 13), it is observed that the majority of the sequences 
4–6 and higher porosity sequence 3 (18–27% porosity) measure-
ments follow similar linear models but that the mid-porosity 
range (6–16% porosity) in sequence 3 measurements have a 
much different linear relationship showing much higher permea-
bility for porosities in that range than the general population of 
measurements.  Based on these observations, sequence 3 sand-

Figure 7.  Map showing reservoir oil age across the U.S. Gulf Coast region (from Merrill, 2016, courtesy of the U.S. Geological 
Survey, as modified and generalized from Hood et al. (2002]).  Red colored points indicate the approximate locations of the Albi-
an age clastic reservoirs (Nehring Associates, Inc., 2009). 
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stones with 10–16% porosities have much greater deliverability 
(permeability) than the general sandstone reservoir permeabilities 
measured.  These models are statistically valid at the 99% confi-
dence interval (sequence 5 is only valid at the 95% confidence 
interval, but the population of sequences 4–6 combined are valid 
at the 99% confidence interval) (Snedecor, 1946).  These obser-
vations are highly statistically significant; but how are they quan-
tified with productivity? 

Statistics of Model Variables                        
(Reporting and Description) 

Descriptive statistics are the exploratory data analyses 
(EDA) defining the location, spread, and shape of the variable 
data distributions (univariate statistics).  This process is often 
overlooked in application of machine learning and AI.  It is im-
portant to build and review these simpler, individual variable 

Figure 8.  (A) Burial history for the Ram Petroleum (Pruett) Womack 1–3 well, 1–10N–17W, Magee Field, Simpson County, Mis-
sissippi.  This well is approximately 10 mi southeast of the Martinville Field.  The base of the Ferry Lake / top of the Rodessa is 
100 ft deeper than at Martinville Field but a good proxy for the burial history for the Martinville.  (B) Thermal maturation model.  
(C) In situ hydrocarbon generation and expulsion models.  Modified after Mancini (2012). 
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models because they are not only the basis of all analyses and 
analytics, but also once understood bivariate, multivariate, and 
more complex models are much easier to build and understand by 
the architect (geoscientist, engineers, and data scientists) and 
target audience (managers or investors) for whom the models are 

to be communicated.  Understanding the terminology and mean-
ing of these models, makes the conceptual and intangible better 
understood. 

The available data in the evaluation are a subset of the popu-
lation used to describe the population through statistical infer-

Figure 9.  Generalized events chart for Smackover Formation hydrocarbons in Albian clastic reservoirs (from Merrill, 2016, cour-
tesy of the U.S. Geological Survey).  More detailed chronology for the Martinville Field area is shown in Figure 8. 

Figure 10.  Bubble maps of 3 of the 5 parameters for the participation agreement proposed.  (A) Cumulative production (25%) 
from the Rodessa (agreement production through October 1995; production shown through December 1995).  (B) Production 
rate for the most recent 4 months (10%), July 1–October 31, 1995.  (C) Estimated remaining reserves (35%).  Green bubbles are 
static production figures (cumulative production and estimated remaining) and red bubbles are production rates over given 
periods of time.  Bubble maps where scaled for each individual map and not relative size among maps.  The focus is on the 
Rodessa production in the northeastern fault block.  Sligo production is shown for two wells in the southern and southwestern 
fault blocks on the southern portion of (A) only. 
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ence.  In standard, normal statistical inference, the samples must 
be unbiasedly sampled or collected, use a consistent and efficient 
sampling method, be of sufficient sample size, be randomly se-
lected, and be normally distributed from the normally distributed 
continuous population being defined and described.  Most of the 
datasets collected and used in this study do not meet all these 
requirements; they are imperfect.  It is important to be aware and 
understand these imperfections when using statistical inference in 
attempts to model and define the population sampled. 

The sidewall core laboratory measurements of porosity for 
the Rodessa sandstone reservoir, Martinville Field (Fig. 14), pro-
vide an example.  Test for normalcy include the three measures 
of central tendency (mean, median, and mode) each at or close to 
the same value.  In this case the mean and median are both at 
16% porosity, whereas the mode is at 22% porosity.  In a stand-
ard, normal plot, each of those measures should be at or near a 
single, central measurement point.  The inflection point (red cir-
cles outlined in black in Figure 14B) of the frequency plot should 
be at +/- 1 standard deviation but are stretched out because of the 
flat nature of the mid-range of the frequency plot.  All of the 
measurements are within three to four standard deviations, which 

is positive (no exaggerated tails).  Given the sample size, sym-
metry of the curve and using standard statistical inference, likeli-
hood or confidence interval that the population mean is captured 
by this sample mean is defined by the following.  There is a 99% 
confidence interval that the population mean is between 14.6% 
and 17.4% porosity and at the 80% confidence interval that the 
population mean is between 15.3% and 16.7% porosity (Daniel, 
1977).  In medical sciences and pure sciences (physics, chemis-
try, and mathematics; these are non-complex sciences [McAlester 
and Hay, 1975]), 99% confidence intervals are typically used.  In 
complex sciences like geology, an 80% confidence interval is 
more typical.  Given these, the sample is not perfect but useful.  
Using sample size and standard deviation, it is determined that 
this sample is within 1% of the true population with a 90% confi-
dence interval but not a 95% confidence interval.  Through inter-
polation it is estimated to be closer to a 93.2% confidence inter-
val (Daniel, 1977).  

Why is this expected standard, normal sample distribution 
not more perfectly normal?  In this case, it is most likely due to 
sampling error.  That is, when sampling, cutting, and collecting 
sidewall cores, the samples were not unbiased, random, consist-

Figure 11.  Rodessa sandstone isopach maps, with black & white versions from 1996 (10 ft contour interval) and color versions 
revised in 2020 (5 ft contour interval) with the color revised versions also including data from the Smith 23–6 #2 well drilled and 
completed after the 1996 black & white interpretations were made.  (A) Net Rodessa sandstone reservoir isopach maps of se-
quences 3–6.  (B) Net reservoir sandstone isopach maps, sequence 3.  (C) Net reservoir sandstone isopach maps, sequence 4.  
(D) Net reservoir sandstone isopach map, sequence 5.  (E) Net reservoir sandstone isopach maps, sequence 6. 
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ently and efficiently selected.  Often when sidewall core points 
are selected, there is an oversampling of higher porosities, under-
sampling of low porosities, and the method of selection is not 
consistent.  That is, part of the reason why the mode in Figure 14 
is at the high end of the porosity range (22%) and not closer to 
the sample mean and median (16%), thus causing a skewing to 
the left (longer left tail) because of the sampling error.  It does 
not mean that the selected variable cannot be used, just that the 
investigator should be aware of the distribution parameters and 
aware of the bias. 

The histogram and frequency plot of permeability (Fig. 15A) 
illustrates another common observation of the variables in geo-
logic analyses.  Permeability is not normally distributed; it is log-
normally distributed as are many variables in geoscience and in 
nature.  Why are there so many log-normally distributed naturally 
occurring variables?  It is because these are typically not a simple 
basic measurement but a product of two or more variables.  Po-
rosity described above is a simple static parameter and follows a 
standard, normal distribution.  Permeability measurements are 
not.  Permeability is a dynamic measurement of the movement of 
a fluid or gas through a pore throat.  The measurement is depend-
ent on the type of fluid or gas used, temperature, pressure and 
possibly other variables (e.g., time and sample size measured 
against a standard).  Another common example is rainfall which 
is not only dependent on relative humidity, but also temperature 
change, pressure, wind, and other variables.  Fortunately, simple 
transformations, in this case transforming the measurements into 
log-normal distribution (Fig. 15B), create the standard, normal 
distribution that lends itself to standard, normal statistical analy-
sis and treatment.  This highlights the importance of reporting 

and reviewing the simple univariate plot of each variable.  With 
practice and expertise, observations of log-normal, quadratic, and 
other transformation methodologies gain clarity.  The transfor-
mation and use of these transformed measurements enhances the 
application of that variable in standard, normal statistical models 
and practice. 

This parameter becomes even more compact or a tighter 
statistically and a more standard, normal distribution is obtained 
by truncating measurements more than three standard deviations 
from the mean (Fig. 15C).  Such data management is useful and 
correct if used consistently for individual variables and for all 
variables.  It is also important to know the measurement accuracy 
of the equipment being used.  At the time the samples were taken 
and measured (1958–1990) were measurements of permeability 
in the 1 millidarcy range as accurate as in the 10–100 millidarcy 
range?  Low or high measurements may be eliminated due to 
knowledge of the measurements as well as pure statistical rea-
sons.  Notice that the measures of central tendency move to the 
center of the distribution and the variability is reduced (standard 
deviation is reduced from approximately 0.52 (Fig. 15B) to 0.31 
millidarcys (Fig. 15C).   

Reviewing Figures 15B and 15C provides a clue to addition-
al analysis (statistical and technical domain expertise) that is 
needed.  These univariate plots show a bimodal distribution.  
There are many sophisticated test and solutions to treating bi-
modal distributions statistically/mathematically (Zhang et al., 
2003; Van der Eijk, 2001; Ashman et al., 1994; Ellison, 1987) for 
the data scientist but these are beyond the scope of this research.  
The significant application here is that bimodal or multimodal 
distributions are often an indication of the combination of more 

Figure 12.  Total Martinville Field Rodessa sandstone reservoir permeability and porosity sidewall measurements.  The regres-
sion model is statistically valid at the 99% confidence interval.  There are two clouds of data measurements with slightly high 
and low observations (clouds outlined in red). 
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Figure 13.  Sequence 3 linear model in red (data are red circles); sequence 4 linear model in gray (data are black squares); se-
quence 5 linear model in orange (data are black triangles); and sequence 6 linear model in black (data are black circles). 

Figure 14.  (A) Univariate histogram plot of porosity for the Rodessa sandstone reservoir, Martinville Field.  (B) Univariate, histo-
gram, and frequency plot of porosity for the Rodessa sandstone reservoir, Martinville Field  

106 Bill Fairhurst 



than one underlying population that should be separated 
(Chaudhuri et al., 2010; Sturrock, 2008; Lindsay, 2005; Schilling 
et al., 2002; Sambrook Smith et al., 1997; Wilcock, 1993; Eisen-
berger, 1964).  The observations in Figure 15 are defined and 
described by the bivariate reporting and description in Figure 13 
(and later with multivariate or multilinear regression).  Once ob-
served by the domain expert, rather than splitting those distribu-
tions with sophisticated statistical or mathematical solutions, the 
split can be made by recognizing the technical reasons for the bi- 
or multimodal distribution and related geologic reasoning.  That 
is to determine if there are actually two or more separate popula-
tions represented.   

In this case it is the higher permeability distribution of se-
quence 3 compared to sequences 4–6 (Fig. 13).  Separating se-
quence 3 from the population of hydrocarbon productive Rodessa 
sandstone porosity and permeability are illustrated in Figure 16.  
Figures 16A and 16B are at the same scales as Figures 14 and 15 

for ease in comparison.  The resulting porosity distribution (Fig. 
16A) reduces the multi-modality of the distribution, but results in 
a more skewed distribution; again, likely from selection bias.  
The selection process was heavily weighted toward samples in 
the 17–23% porosity range over samples in the 6–16% range.  
The range and bimodality of permeability (Fig. 16B) is reduced 
supporting the separation of sequences 3 from sequences 4–6.  
The range is reduced from Log(10) 0–2.5 or 1–316 millidarcys to  
Log(10) 0–2 or 1–100 millidarcys.  Two-thirds of the permeabil-
ity measurements in sequence 3 are Log (10) 1.5 (32 millidarcys) 
or greater but only 25–31% of sequences 4–5 and only 14% of 
sequence 6 has permeability in that upper range.  The remaining 
bimodality is again likely bias in selection.  Other technical sepa-
ration tests did not prove to be justified or statistically valid.  The 
original bimodality indicated or provided evidence of multiple, 
different populations captured and illustrated in the univariate 
plot, the geological reasoning and scientific investigation sup-

Figure 15.  Histogram and Frequency Plot of the permeably of the Rodessa sandstone reservoir, Martinville Field.  (A) Standard 
numeric plot, (B) Log normal plot, and (C) truncated log normal plot. 

Figure 16.  (A) Porosity histogram and frequency plot for Martinville Field, Rodessa sandstone reservoir sequences 4–6.                  
(B) Permeability histogram and frequency plot for Rodessa sandstone reservoir sequences 4–6.  Sequence 3 has been removed 
to test the two population distributions validity. 
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ported the separate treatment of those populations.  Additional 
treatment and separation follows with development and investi-
gation of multivariate and multilinear regression models. 

The critical point for these univariate statistical measure-
ments and plots is to review the data to determine its applicability 
to treatment as a standard, normal statistical variable.  If it is not 
a standard, normal distribution, then visual observation of the 
plotted variable may determine if a simple transform can be ap-
plied to convert the measurements for standard, normal statistical 
inference and application. 

Basic univariate (Figs. 14–16) and bivariate (Figs. 12 and 
13) statistical analysis applied to the Rodessa sandstone hydro-
carbon reservoir in the Martinville Field are important descrip-
tive, reporting, and analytical modeling steps (Fig. 17) completed 
and plotted using basic Excel spreadsheets and plots.  These steps 
in current machine learning and AI are often underutilized and/or 
underreported.  Those analyses are missing these steps and may 
be using more-sophisticated statistical methodologies without 
realizing or reporting the potential statistical, analytical errors 
and moving toward the black box area of Figure 1.  The steps 
shown and reporting here make additional, more sophisticated 
models and solutions move into the white box, understood, re-
gion of analytics, more applicable for the domain expert and pe-
troleum geologist, and are often superior statistical models that 
also make it easier to communicate to the intended, audience. 

 
Descriptive Analytics, Multivariable Analytics,      

and Segmentation   
With these data, information, and reported univariate and 

bivariate statistics, we return to the geologic research question:  
is there any way to define and communicate the potential for 
each 40 ac unit separately and differently than the single reser-
voir model for the Rodessa sandstone reservoir using available 
data and information?  The goal is to develop a descriptive ana-

lytic model using multivariate analysis to more thoroughly and 
accurately define the productive potential of each 40 ac tract.  In 
developing and communicating these models, the goal is to de-
velop a more sophisticated solution (x axis of Figure 17) with a 
greater business impact (y axis of Figure 17). 

What is to be modeled is the estimated ultimate recovery       
for each tract; future production and value, more specifically the 
8 tracts with wellbores used to estimate cumulative production, 
current production, and remaining reserves (value) for the uniti-
zation agreement.  The estimated ultimate recoveries and estimat-
ed remaining production (value) for available wellbores and units 
were provided by reservoir engineering using standard decline 
curve analyses.  Combining the geologic and engineering varia-
bles a first model (model #1) was developed to predict estimated 
ultimate recovery by total Rodessa sandstone thickness (h, Fig. 
11A), year of first production, and structural subsea elevation of 
the base of the Ferry Lake Anhydrite / top Rodessa sandstone 
(Fig. 4B).  These multilinear regression models were developed 
in 1996, revised during 2017 using SAS and Minitab, and con-
firmed using R in 2020. 

 
Model #1 = 36,257,308 + (16,257 * NetSd) + (11,024 * 

Yr1stProd) + (5273 * subsea z value)  
 
This model has a multiple r2 of 0.686, adjusted r2 of 0.4505, 

F–statistic of 2.913, and p–value of 0.1642.  Most reported              
research incorrectly uses r2 values (additional explanation is sig-
nificant and needed but not provided here).  The F–statistic is 
more significant for these multilinear regression models.  The            
F–statistic here does not have a high level of statistical signifi-
cance (confidence interval is approximately 83.58%; Documenta 
Geigy, 1970) meaning that just using total net Rodessa sandstone 
reservoir thickness, structural level, and time variables do not 
provide a very strong statistical explanation for the estimated 
ultimate recovery estimates.  This model is likely too generalized 

Figure 17.  Plot of the business impact of statistical models by the sophistication of the solution. 
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without enough well-defined variables or observations to                 
accurately model estimated ultimate recoveries.  An 80% confi-
dence interval for geologic studies may be acceptable but             
because better models were developed this model has been elimi-
nated. 

Rather than using total net Rodessa sandstone thickness, 
model #2 uses the thickness of each sequence separately  
(NetSd6 = net sandstone thickness of sequence 6, etc.):  

 
Model #2 = 27,514,044 – (25,277 * NetSd6) – (26,556 * NetSd5) 
+ (45,585 * NetSd4) + (89,221 * NetSd3) – (14,503 * Yr1stProd)  

 
This model has a multiple r2 of 0.9972, adjusted r2 of 

0.9903, F–statistic of 144.4, and p–value of 0.006894.  Statisti-
cally valid at the 99.5% Confidence Interval using r2 and the F–
statistic (Documenta Geigy, 1970).  However, this is a classic 
case of overfitting.  Overfitting in this case occurred because the 
model contains a high number of variables relative to the number 
of observations (Everitt et al., 2010).  Overfitting of a model oc-
curs when “an analysis which corresponds too closely or exactly 
to a particular set of data, and may therefore fail to fit additional 
data or predict future observations reliably” (Lexico, 2020).  This 
can also mean the statistical model is failing to be a good statisti-
cal inference for the population being modeled.  The “noise or 
random fluctuations in the training data is picked up and learned 
as concepts by the model … [and] is more likely with nonpara-
metric and nonlinear models that have more flexibility when 
learning a target function” (Browniee, 2016).  So, a warning with 
nonparametric and nonlinear black box models (Fig. 1).  The 
domain experts should be aware of overfitting and review all 
models with data scientists. 

Overfitting in this case was identified because of the ex-
tremely high statistical fit of the model, negative constraints asso-
ciated with items that should have positive constraints (NetSd6 
and NetSd5), and resultant negative estimated ultimate recovery 
for one of the wells and units, not a possible outcome or predictor 
value.  Because there are only 8 wells in the dataset providing 

only 8 observations, too many variables were included for accu-
rate statistical inference.   

The failed model does, however, provide useful information.  
The overfitting by having too many variables for the number of 
observations together with the observation having better produc-
tion with a well-developed sequence 3 sandstone reservoir is 
supported by the higher permeability in that sequence at a given 
porosity relative to sequences 4–6 (Fig. 13).  From these, model 
#3 is developed to use fewer variables, honoring those relation-
ships, and using the separation developed during description and 
reporting of univariate statistics and geologic, domain expertise, 
observation (Table 1): 

 
Model #3 = 64,825,519 + (9,639.5 * NetSd456) + (54,320.5 * 

NetSd3) – (1270.6 * Yr1stProd) + (5687 * subsea z value).   
 
NetSd 456 is the combined subsets of sequences 4–6 with 

NetSd3, sequence 3 separated.  Model #3 multiple r2 is 0.9963, 
adjusted r2 is 0.9913, F–statistic is 200.1, and p–value of 
0.000569.  A very good statistical fit, no erroneous directional 
constraints, and individual variable statistical significance codes 
at the 99% and 99.5% significance level (excluding Yr1stProd, 
see asterisks in variable line and explanation in Table 1).  The 
small or tight statistical measures of the individual variables 
within the model (not provided by r2 measurements, but provided 
separately with model output; Table 1) support a good, not over-
fitted model (Burnham et al., 2002). 

What does this analytical, machine learning model #3 tell us 
that was not known from previous geological and reservoir engi-
neering evaluation?  Most significantly, it supports, qualitatively, 
the observations in Figure 13 that the higher permeability-
porosity relationships observed in sequence 3 should be separated 
from the permeability-porosity relationships in sequences 4–6.  
These sequences can be defined and separated for evaluation as 
concluded from statistical and geologic observations from the 
univariate plot and analyses and multivariate / multilinear model-
ing of estimated ultimate recovery.  If this were not the case, 

Table 1.  Multivarient / multiline-
ar regression model for net 
sandstone reservoir sequences, 
year of first production, and 
structural position of the 
Rodessa production, Northeast 
Martinville Field fault block.  
Note:  there was a different num-
bering system at the time these 
models were run than the num-
bering system used in this pa-
per.  Previously, the sequences 
were numbered (1–6) top to bot-
tom as encountered by drilling; 
subsequently, they were num-
bered geologically more correct-
ly in the proper sequence-
stratigraphy, order of deposi-
tion.  NetSd123 and NetSd4 in 
this table and as run during sta-
tistical, multilinear evaluation 
are sequences 6, 5, 4, and 3, 
respectfully. 
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model #3 statistical results would look much like model #1.  Be-
cause that separation did provide for a more valid and reliable 
model, the treatment of sequence 3 separate from sequences 4–6 
was validated.   

The addition of 1 ft, more or less, of reservoir sandstone in 
sequence 3 has a 5.6 times greater effect on estimated ultimate 
recovery than a 1 ft change in sequences 4–6 or a 2.4 times great-
er effect on a percentage basis.  Having identified and provided 
proof of the separation of these sequences and differences in pro-
ductive potential of each sequence, explains the relative differ-
ences in production observed in 1996.  These are the Sullivan   
23–13 #2 well, 1.3 MMBO production since 1958, the 155 thou-
sand barrels of oil (MBO) in the Kennedy 23–2 well in just 4 yr, 
more than 3 decades after field discovery, and better production 
in the Jennings 23–5 well (267 MBO) and Sullivan 23–11 well 
(291 MBO) than the other three wells in better structural posi-
tions in the field (average production of 79 MBO).  The year of 
first production and structural position are contributing variables 
to the model.  The ordered weight of the variables in this model 
are:  NetSd3, Yr1stProd, NetSd456, and structural position.  This 
modeling and proof was not accomplished by geologic or analyti-
cal investigation separately but by the interaction of the two do-
mains during scientific investigation and exploratory data anal-
yses (EDA) to analytical modeling interactive processes. 

 
Model Testing 

Three types of model testing are presented.  First is the sta-
tistical validity and confidence intervals defined with the descrip-
tions of the models.  Second is to randomly remove small da-
tasets from the model, redevelop models on the majority of the 
data, and test how well the model defines the data removed or 
how little the model is changed when the data are reincorporated 
into the model.  This method will be shown later when a new 
well is drilled subsequent to the initial study in 1996.  Any final-
ly, third, is to look back at how well the model did with the test 
of time.  Because these models were first developed in 1996, it is 
possible to see how well or not these models predicted future 
production (value) almost a quarter of a century later.  This is 
perhaps the best of the 3 test methodologies, but is typically not 
available when models are first developed.  

Model #3 can be tested against the 3 metrics from the origi-
nal research question:  unitization percentages, estimated ultimate 
recovery percentages, and  current production percentages, each 
meant to represent proportional contribution and future value to 
the field-wide, northeastern fault block of the Martinville, 
Rodessa Oil Pool.  What is being estimated is the contribution in 
production and value of the southern two-thirds of the field com-
pared to the northern one-third of the field.  The first test will be 
made for the next 11 yr of production.  The reasoning for the 
chosen time periods is explained later. 

The unitization agreement proposed and accepted by the 
Mississippi Oil & Gas Board weighted Coho’s interest in the 
southern two-thirds of the field at 79.9% of the field and the oth-
er companies on the northern one-third, 20.1%.  Model #3 valued 
the future production 52.63% of the total fault block in the south-
ern two-thirds and 47.37% in the northern one-third.  A 23.27% 
difference in interpretations.  Which was a better predictor with 
known information in 1996 (Fig. 18A) looking back at actual 
production during the next 11 years (production during 1996 
through 2006)?  Actual production from known producing wells 
and units from 1996 through 2006 was 59.15% in the southern 
two-thirds and 40.85% in the northern one-third.  The unit agree-
ment overestimated the southern two-thirds contribution and 
underestimated the northern one-third contribution by 20.75%.  
Model #3 underestimated the southern two-thirds of the field 
contribution and overestimated the northern one-third of the field 
contribution by 6.55%.  The errors were in the opposite direction, 
but model #3 was 3.2 times more accurate (20.75% / 6.55%) in 

estimating future value than the arbitrary unitization agreement 
as proposed and accepted.  At the level of the individual units, 
there was a weighted average error of only 3.27% between model 
#3 constructed using the geologic, production, and field infor-
mation available in 1996 in predicating the percentage contribu-
tion of each known producing well and 40 ac unit for the next 
eleven years (1996–2006). 

Activity in the field did not remain static.  Later during 1996 
after the initial study was completed, an additional well was 
drilled in the central portion of the field, the Smith 23–6 #2 well 
(Figs. 18B and 18C; and included in the color isopachs of Figures 
11B–11E).  The new Smith well and open-hole log interpreta-
tions provide another test for model #3.  Using geologic subsur-
face data from log (Fig. 18B) interpretation, timing, and the ana-
lytical equation developed using multivariate, multilinear regres-
sion, model #3 predicted an estimated ultimate recovery for the 
new Smith 23–6 #2 well of 178,797 BO.  The well produced 
164,344 barrels of oil (BO) from late 1996 through 2006.  Model 
#3 estimate is within 8% of the actual production over the next 
11 yr—an excellent test of the model.  The Smith 23–6 #2 well 
was converted to a salt-water disposal well once depleted to sup-
port production via water-drive for the Kennedy 23–2 well, 1320 
ft to the north from 2007–2015 as described below. 

Denbury Resources, Inc. purchased the field in 2002.  Be-
ginning in 2006–2007 changes Denbury made to the water injec-
tion program produced another 267,460 BO in the Kennedy 23–2 
well representing 51% of total field production during 2007-2019 
in the northern one-third of the field.  In the southern two-thirds 
of the field, 225,028 BO was produced from the Sullivan 23–13 
#2 well and 27,877 BO from the Jennings 23–11 well together 
representing 49% of the total field production during 2007–2019 
(Fig. 19A).  These are within 4% of the proportional field models 
that are relatively simple geologic and engineering variables and 
analytic models developed nearly quarter century earlier by mod-
el #3. 

 
SUMMARY AND CONCLUSSIONS 

The oil and gas industry transformation involving analytics, 
machine learning, and AI is underway.  The petroleum geologist 
using current skills or skills they are well suited to obtain are 
capable of being a valued part of this transformation. 

Data scientists working in independent oil and gas firms and 
service organizations have the statistical and mathematical skills 
to accomplish the analytical modeling of projects.  They often 
lack the industry specific knowledge, skills, and industry experi-
ence to provide successful application to real-world oil and gas 
application.  This provides an opportunity for the petroleum geol-
ogist to share and train data scientists with our methods, process-
es, and specific variables in this highly technical industry and 
applications.  With knowledge of analytics and machine learning, 
the petroleum geologist and other industry domain experts can 
not only include analytics in their own technical work, but can 
also provide and fully perform the data science function within 
their own workflows through to project completion. 

The same skills and tools that geologists use in observation, 
measurement, discovery, insight, and connecting variables and 
information from multi-disciplinary nature of the petroleum geol-
ogist’s science are the same skills needed to make analytics and 
machine learning useful and successful.  The process is best 
when it is an interactive sharing of observations for the discovery 
of the relationships between the petroleum geologist and data 
scientist or petroleum geologist knowledgeable in the use of ana-
lytics, using analytics themselves as one of their technical tools.  
This study has documented the understanding and relationships 
between Rodessa sandstone environments of deposition, facies, 
sequences, reservoir quality variables, and using geology to de-
fine the productivity by sequences through data analytic models.  
Without superior technical analysis, superior analytical analysis 
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Figure 18.  Production 1996–2006.  (A) Production 1996–2006 in known wells and units from early 1996.  (B) Smith 23–6 #2 
drilled and completed late 1996.  Note the well-developed reservoir sandstones sequences 1-3, good SP (solid line) and lean 
Gamma Ray (dashed line) development and separation good porosity and permeability shown by the separation of the medium 
(dashed line) and deep resistivity (thin solid line) curves.  Note the negative deflection and low resistivity, water-wet porosity in 
sequence 1, developing transitional to oil wet in sequence 2 and well-developed sandstone reservoir and oil wet, positive de-
flection and 10 times higher resistivity.  Deep resistivity is 2 ohms in sequence 1 and 20+ ohms in sequence 3 (oil productive).  
Sandstone reservoir quality decreases up section.  (C)  Location and bubble symbol of the Smith 23–6 #2 well production, 1996– 
2006.   

Figure 19.  (A) Bubble map of total Rodessa sandstone reservoir production 2007–2019 (last 12 yr).  (B) 1996–2019 (last 24 yr).  
(C) Cumulative field production from discovery through December 31, 2019 (62 yr). 
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will not be achieved.  Analytics without the petroleum geologist 
and other domain experts input will not be as useful to the organ-
ization, industry, and management as investors and organizations 
need it to be. 

The example of past and future production (value) from the 
Rodessa sandstone reservoirs in the northeastern fault block, 
Martinville Field, Simpson County, Mississippi, was used to 
illustrate: 

(1)  Advancement of geological understanding of the trap; 
reservoir; top, bottom and lateral seals; source; and migra-
tion to support the enhanced geologic interpretation and 
understand of production from these Rodessa sandstone 
reservoirs. 

(2)  Using that enhanced understanding to interactively work 
with statistics and analytical tools to further define the 
geological models and understanding of porosity, permea-
bility, and the relationships with hydrocarbon production 
by sequence.   

(3)  Finally, building a complete analytic, machine learning 
statistical model to explain past and future hydrocarbon 
production and potential.  That model and individual vari-
ables were validated using standard statistical tests, accu-
rately predicting future wells performance, future perfor-
mance and value of the separate areas of the field down to 
the individual well and 40 ac units.  These models provid-
ed analysis in 1996 that proved to be accurate to within 
4% by 40 ac units and full-field through the end of 2019, 
nearly a quarter-century later.  Looking back, it passed the 
test of time using technical variables to predict future out-
comes. 

The new analytical, machine learning, AI model is success-
ful.  It was successful in the overlapping intersection of domain 
expert and data scientist.  Marathon Oil Company understood and 
valued the advancement of technical understanding provided by 
the analytics and machine learning multivariate and multilinear 
regression models and how it could be used to evaluate and pre-
dict future field performance. 
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