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EXTENDED ABSTRACT

Subsurface core borings have provided a fundamental understanding of strati-
graphic architecture and depositional processes in the Mississippi River Delta. Careful
observation of lithostratigraphic successions has led to the realization that delta plain
construction is marked by a cyclic repetition of depositional events that occur in a con-
sistent temporal manner. Crevasse splay-generated subdeltas are a primary driver of
sedimentation in the modern Balize delta, and it is postulated that older lobes operated
in a similar fashion. This study aims to determine the depositional processes that govern
the middle Breton Sound estuary, an area within the geographic framework of the
Plaquemines delta lobe, and to temporally constrain their occurrence through strati-
graphic analysis and radiometric dating.

Twenty-five vibracores, up to ~5 m long, were collected from the study area and
underwent whole-core density, grain size, and loss-on-ignition analyses. To provide age
control, ten samples from the cores were chosen for radiocarbon dating. Grain size
analyses of 252 downcore samples demonstrated that silt is the dominant grain size, a
finding consistent with that of other receiving basins in the area (Fig. 1). Loss-on-
ignition testing revealed that organic-rich sediments are primarily concentrated in the
first meter of the vertical profile with smaller yet appreciable peaks between two and
three meters depth (Fig. 2). Five lithofacies were identified based on physical properties
and correlated to distinct subdeltaic depositional environments. '*C dating of in situ
bivalve shells and the base of surficial peat yielded calibrated ages of ~1150 and ~350
calendar years B.P., respectively.

Originally published as: Bomer, E. J., IV, S. J. Bentley, K. Xu, and Q. Chen, 2016, Sedimentation dynamics and stratigra-
phy of the middle Breton Sound estuary, southeastern Louisiana: Spatiotemporal evidence for subdeltaic evolution: Gulf
Coast Association of Geological Societies Transactions, v. 66, p. 695-696.
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Scientific Objectives

* Ascertain the deposition processes that govern Breton Sound
estuary using grain size trends and stratigraphic analysis from
core borings

e Constrain relevant chronostratigraphic boundaries and delta-
building events using AMS '4C dating




Introduction




Previous Work — Early Studies

Mississippi River Delta (MRD) geomorphic studies
e Trowbridge (1930)

 Russell (1936)

 Russell and Russell (1939)

MRD subsurface studies
*  Fisk (1944)
 Coleman and Gagliano (1964)

MRD geochronology studies
 Mclintire (1954)
* Frazier (1967)

Frazier (1967)
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Previous Work

Cyclicity of deltaic sedimentation occurs on multiple temporal scales

Delta lobe Subdelta
1000 — 2000 years 100-200 years
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Previous Work

MODERN MISSISSIPPI RIVER SUBDELTAS
Dry Cypress Bayou Complex.
Grand Liard Complex.
West Bay Complex.
Cubits Gap Complex.
Baptiste Collette Complex.
Garden Island Bay Complex.
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Carte Sect.,.CSLLSU

Coleman and Gagliano, 1964

Crevasse splay deposits

Form from a break in the natural levee

* Sediment rapidly infills open bay

Percent of Growth

+ West Bay

* Garden Island Bay
4 Cuybits Gap

® Boptiste Collette
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1
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Years after Subaerial Land

Coleman, 1988

Subdelta evolution
* Consistent development sequence
e Life span of 100 — 200 years
» Responsible for >80% of land growth
in Balize delta (Davis, 1993)




Study Area




Middle Breton Sound (MBR)
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Hypotheses

* Hypothesis |

* The stratigraphy in the upper reaches of Breton Sound is composed of:

* Fluvial sands and muds deposited by crevasse splays during the Plaquemines delta
phase (ca. 1000-500 years BP)

* Peat and mud deposited by non-fluvial processes like organic growth and storm-
driven flooding after the delta prograded downstream to its present location

* Hypothesis Il

* The base of peat age is coincident with the onset of sediment bypassing
and Balize delta lobe progradation (ca. 500 years BP)




Methodology




Field Work

Coring locations
* Situated such that they encompass enlf
i i : : Pt it ’ii
a spatial area indicative of the NS
receiving basin |

Data collection ’
e Vibracores (n=25)
* 6 m penetration

 Piston cores (n=25)
* 1 m penetration

e Vane shear stress (n=100)

* Measurements taken every 50 cm to a
depth of 2.5 m

* Performed by LSU Department of Civil
and Environmental Engineering

0 2325 3N 5 Kilometers
i O ot R s T

13




Granulometry

Mixed with ~5 ml of
NaH,PO, and poured
through 850 pm sieve

Add ~5 ml of 30% H,0,
and place in hot bath
at 60°C for 6 hrs

Add ~40 ml of NaH,PO,
and disperse in Particle
Size Analyzer

Laser diffraction
particle size analyzer




Loss-on-Ignition

Heated at 60°C for
72 hrs in drying oven

Homogenized with

Wet sediment
mortar and pestle

.

L\
<P

Combusted at 550°C for
2 hrs in muffle furnace

e A R

.
Dehydrated sediment Mineral remnants




Results




MBR Grain Size and Loss-on-lIgnition Results
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14C
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14C Results — In situ Bivalve Shells
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Lithofacies Succession in MBR 12




Lithofacies Succession in MBR 12
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Discussion and Interpretations




Lithofacies 1 (F1): Shell-rich open bay clay

- Highly biotur ray cl

B Grand Liard Complex g y b Otu bated g ay C ay

C West Bay Complex

3D Cubits Gap Complex

E Baptiste Collette Co |e:|< ;
omplex ||

- Presence of Rangia shells
indicates a shallow (<6 m)
open bay environment

- Bulk density
_ P i {7, * Variable due to shell
o | Sl s content, but in general,

15 Km.

e o 1.5-2 g/cc

Depositional and facies
model - Cubit’s Gap subdelta
(Coleman, 1988)
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Lithofacies 2 (F2): Prodelta silts and clays
520

o] —
Massive clay grades upward j

into well laminated
interbedded silts and clays

Often can be calcareous
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Lithofacies 3 (F3): Distributary channel sands and silts
Alternating sands and silts 200 e |  WWPrak

250 | 300 gk 350
* Sand packages become m 1 '

thicker and more | | l
prominent upsection | |

Diagnostic feature is the
presence of sedimentary
structures
 Currentripple 295
lamination
* Convolute lamination

Represents maximum
hydraulic efficiency

Bulk density
e 1.75-2.25g/cc




Lithofacies 4 (F4): Interdistributary bay silts and clays
3.50

Silts and clays that - o
become organic-rich -
upsection (LOI > 30%)

Sediment deposited by
distributary overbank
flooding

Homogeneous texture
suggests extensive
bioturbation

Bulk density
e 1.5g/cc




Lithofacies 5 (F5): Organic-rich marsh peat

(Coleman, 1988)

Dark brown, fibrous,
organic-rich peat with
minor amounts of
detrital material

In situ carbonaceous
material and LOI > 60%

Clay stringers represent
local flood and/or
storm events

Bulk density
e 1-1.5g/cc

0

Top of core

50 |




West-East Cross Section and Lithostratigraphy
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North-South Cross Section and Lithostratigraphy
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Splay Isopach Map

Natural neighbor interpolation

Average MBR vibracore
compaction = 24%
* Actual splay thickness could be
>6 m near point source
Thickness (m) . | Consistent with Coleman and
Prior (1982) and Coleman
(1988)




Conclusions

* The lithostratigraphic succession observed in MBR cores is
consistent with that of modern crevasse splay deposits (e.g.
Coleman and Prior, 1982; Coleman, 1988)

 Splay thickness spatial distributions suggest that a levee breach
occurred north of the study area and distributaries propagated in a
south to southeast direction

o 14C ages of basal peats indicate that the onset of subdeltaic activity
occurred no later than 470 + 40 years B.P.

o 14C ages of bivalve shells indicate that an open bay environment
occupied MBR ~950 to 1310 years B.P.
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