Use of Unmanned Aerial Vehicles (UAVs) to Create Digital Outcrop Models: An Example from the Cretaceous Cow Creek Formation, Central Texas

Chris Zahm¹, Josh Lambert¹, and Charlie Kerans²

¹Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, University Station, Box X, Austin, Texas 78713–8924, U.S.A.
²Department of Geological Sciences, University of Texas at Austin, 1 University Station C1100, Austin, Texas 78712, U.S.A.

GCAGS Explore & Discover Article #00182*
Posted September 13, 2016.

*Abstract extracted from a full paper published in the GCAGS Journal (see footnote reference below), which is available as part of the entire 2016 GCAGS Journal volume via the GCAGS Bookstore at the Bureau of Economic Geology (www.beg.utexas.edu) or as an individual open-access document via www.gcags.org.

ABSTRACT

The use of unmanned aerial vehicles (UAVs) has increased in popularity among field geologists as a method of collecting quantified field data. Digital photographs were collected using a UAV and a 12 megapixel camera. The methods and workflow utilized to acquire, process and construct a high-resolution 3D point cloud (i.e., latitude, longitude, and elevation) of the outcrop exposure, including a full-color (RGB) for each point, is discussed. From the point cloud, a digital outcrop model (DOM) was developed which enables analysis of bedform geometry of well-preserved beach crest and foreshore clinethems of mixed siliciclastic and carbonate grainstones within the Cretaceous Cow Creek Formation located in Central Texas. The UAV–acquired DOM analyses are compared to field measured strike and dips of the bedforms reported by other workers at the same locality and were within tolerance, but provided continuous measurements along with detailed spatial measurements of the size and shape using the inexpensive and easily created digital outcrop model.