Surface to Subsurface Stratigraphy of the Upper Cretaceous Buda Formation in West Texas

Xiaodong Zhang and Michael C. Pope
Department of Geology and Geophysics, Texas A&M University, MS 3115, College Station, Texas 77843

GCAGS Explore & Discover Article #00184
Posted September 13, 2016.

*Abstract published in the GCAGS Transactions (see footnote reference below) and delivered as an oral and poster presentation at the 66th Annual GCAGS Convention and 63rd Annual GCSSEPM Meeting in Corpus Christi, Texas, September 18–20, 2016.

ABSTRACT

The Upper Cretaceous Buda Formation is composed of bivalve/brachiopod wackestone/packstone interbedded with thin black shale layers (<30 cm thick) exposed in the outcrop of West Texas. Although the outcrops of the Buda Formation are well exposed in West and Central Texas, its subsurface distribution is quite variable across Texas (ranging from <1 m to >113 m). Preliminary wireline log correlations indicate that the Buda Formation thickens into the Maverick Basin of southwestern Texas, and thins onto the San Marcos Arch in the subsurface. Based on the outcrop studies in Val Verde County in West Texas, the Buda Formation is bounded at its top by the regional Mid-Cenomanian unconformity with local hummocky features in the overlying Eagle Ford Group. The Del Rio Formation–Buda Formation contact is a sharp surface with white nodular skeletal wackestone/packstone containing bored rip-up clasts from the underlying Del Rio Formation. Slabbed cores in Wilson and Karnes counties show similar borings within massive beddings as well. Initial review of measured outcrop sections and subsurface core samples illustrates similar lithofacies patterns. Preliminary result of relative uniform macrofossil content (mainly bivalve) and high bioturbated bedding indicate the depositional environment of the Buda Formation tend to be storm dominated intertidal facies in shallow shelf ramp. We are continuing to determine the regional distribution of the deposition environments within the sequence stratigraphic framework of the Buda Formation by integrating subsurface data (wireline logs and cores) with outcrop samples.