Geocentric Sectoring of LWD Azimuthal Log Data for Improved RDIP and RSTRIKE Analysis: Enhanced Reservoir Navigation and Petrophysical Characterization

James J. Willis1,2 and Lauren A. Martz2

1Odyssey International, LLC, 7190-C Cemetery Hwy., St. Martinville, Louisiana 70582
2School of Geosciences, University of Louisiana at Lafayette, Hamilton Hall, Room 323, 611 McKinley St., Lafayette, Louisiana 70503

GCAGS Explore & Discover Article #00212*
Posted October 30, 2017.

*Article based on a full paper published in the GCAGS Transactions (see footnote reference below), which is available as part of the entire 2017 GCAGS Transactions volume via the GCAGS Bookstore at the Bureau of Economic Geology (www.beg.utexas.edu) or as an individual document via AAPG Datapages, Inc. (www.datapages.com), and delivered as an oral presentation at the 67th Annual GCAGS Convention and 64th Annual GCSSEPM Meeting in San Antonio, Texas, November 1–3, 2017.

ABSTRACT

We propose an improved approach for the sectoring (angular partitioning) of LWD azimuthal log data. Our technique defines the sector partitions within a geocentric system. Stratigraphic up and stratigraphic down sectors are defined such that they are perpendicular to bedding, yielding enhanced bed boundary detection and improved relative dip angle (RDIP) calculations. Likewise, stratigraphic left and right sectors are defined such that they are parallel to bedding, yielding refined relative strike (RSTRIKE) extractions for higher resolution petrophysical analysis. Initial sector settings could be pre-set from existing data (e.g., seismic data and subsurface contour maps). Azimuthal data acquired while drilling would reveal if the sectoring goes off-centered due to formational or wellbore orientation changes, allowing sectoring adjustments via downlink command to resume the geocentric sectoring.

Geocentric Sectoring of LWD Azimuthal Log Data for Improved RDIP and RSTRIKE Analysis: Enhanced Reservoir Navigation and Petrophysical Characterization

James J. Willis1,2 and Lauren A. Martz2
1Odyssey International, LLC \quad 2Univ. of Louisiana–Lafayette
LWD Image Logs

- Sensor(s) designed for drilling
 - broad range of RPM and ROP
 - stick-slip tolerant
- Sensors rotate with drill collar, allowing for 100% borehole coverage under optimal conditions.
- LWD Image Logs now available for most key petrophysical measurements.
 - Gamma Ray
 - Azimuthal Propagation Resistivity
 - Density (rhob and delta-rho)
 - Photoelectric Effect (PE)
 - Sonic (DTcomp, DTshear, and DTstoneley)
 - Ultrasonic Acoustic
 - High-Resolution Microresistivity (e.g., StarTrak example at right)
 - Caliper
- Neutron Porosity and NMR not available due to physical limitations.
Individual Sector Curves
Azimuthal Density

(Blue) Raw Data; (Red) Reconstructed Data

Depth (feet)

Relative Dip
Coordinate System Relative to the Wellbore

- Note that the actual orientation of the intersecting plane is horizontal.

- Relative to the wellbore, however, the intersecting plane is dipping 45° in a Relative North (0° azimuth) direction.
- Measured Depth (MD) logs are by default presented in the wellbore reference frame.
- An MD log is printed in a vertical profile with MD increasing downward, regardless of the true wellbore orientation.
- Image logs in particular provide insight into relative dip relations between the wellbore and geological planes.
Description of wellbore (e.g., Top = 0°) relates to relative azimuth.
Inclined plane intersects tubular (near cylindrical) borehole, yielding an ellipse inclined to the well.

Image tube/cylinder is cut at the high-side position and unrolled.

Ellipse transforms to a cosine wave, whose amplitude and phase directly relates to relative dip angle and azimuth.

Height of cosine wave (expressed as wellbore parallel or relative vertical component ΔMD) relates to RDIP angle and ΔX (a function of sensor diameter and DOI).

Phase of cosine wave represents the relative dip azimuth (RAZIM).

Inclined plane intersects tubular (near cylindrical) borehole, yielding an ellipse inclined to the well.
Image Log Format

• An individual log curve is generated for each sector.
 • Note color variations in each sector in left-hand image, each representing an individual log curve (density in this example) for each sector.

• Sectors are then flattened (beginning High Side, and proceeding clockwise around borehole) to form the “raw” image.

• Horizontal and Vertical interpolations are applied as smoothing algorithms.

• Additional image enhancement (e.g., dynamic normalization) can also be applied.
Although stacking generally improves the signal to noise ratio, the stacked section does not necessarily represent the real normal incidence reflectivity.

For data with AVO effects this can cause problems during well-tie and wavelet estimation.

NMO stretching and non-hyperbolic moveout can likewise cause “smearing” of the stacked trace amplitudes.

And where reflectivity variations are averaged out, the inverted P-impedance diverges from the true P-impedance.
• Individual sector curves are “averaged” to yield an overall response curve.

 • *This averaged curve is that which is presented in the typical “wiggly-line” display on a log.*

 • *The average curve can be used to confirm general color scaling of the image log (i.e., do bright/warm tones represent high values and dark/cold to low values, or is scale reversed?)*
In the standard sectoring system, the 1st sector starts at 0° (top side of borehole if deviated; north if vertical) and extends clockwise.

- Shown at left is a 16-sector example: sector 1 = 0–22.5°, sector 2, 22.5–45°, etc.
- Often sectors are averaged into quadrants for real-time transmission with limited bandwidth.
HORIZONTAL BED EXAMPLE

Top-Start Sectoring System

Geocentric Sectoring System

Strat. Left

RSTRIKE

Strat. Right

RSTRIKE

Strat. Down

Strat. Up
Geocentric Sectoring Approach
Orient Sectors According to Geology

HORIZONTAL BED EXAMPLE

Top-Start Sectoring System

- Delayed Bed Boundary Detection
- RSTRIKE at sector boundaries

Geocentric Sectoring System

- Earlier Bed Boundary Detection
- RSTRIKE is centered in Strat. Left and Strat. Right sectors

Sharpest Transition = Highest Stratal Resolution
HORIZONTAL BED EXAMPLE

Real-Time Quadrant System

Geocentric Real-Time System

MD
Relative Strike
Coordinate System Relative to the Wellbore

- Note that the actual orientation of the intersecting plane is horizontal.

- Relative to the wellbore, however, the intersecting plane is dipping 45° in a Relative North (0° azimuth) direction.
RSTRIKE Extraction
Time-Average and Quadrant

Time Average (All Sectors)

RSTRIKE Extraction from Typical Quadrant System
RSTRIKE Extraction
Octant versus Geocentric

RSTRIKE Extraction from
Typical Sectoring System

RSTRIKE Extraction from
Geocentric Sectoring System
Time-Average Gather and Stack
Sector Curves
RSTRIKE Sectors Highlighted
Sector Curves

RSTRIKE Sectors Highlighted

(Mendoza et al., 2009, SWPLA)
Geocentric Sectoring Approach
Orient Sectors According to Geology

DIPPING BED EXAMPLE

Top-Start Sectoring System

Geocentric Sectoring System

Strat. Left RSTRIKE
Strat. Up
Strat. Down
Strat. Right RSTRIKE
DIPPING BED EXAMPLE

Geocentric Sectoring System

STRAT LEFT STRAT RIGHT

Strat. Down
Strat. Left
11 10 9 8 7 6
5 4 3 2 1
15 16 1 2 3
Strat. Up
Strat. Right
Geocentric Sectoring
Adjusting to Geologic Changes

DIPPING BED EXAMPLE

Geocentric Sectoring System

Strat. Left
Strat. Up
Strat. Right
Strat. Down

STRAT LEFT
STRAT RIGHT
DIPPING BED EXAMPLE

Geocentric Sectoring System

STRAT LEFT

STRAT RIGHT
Geocentric Sectoring
Adjusting to Geologic Changes

DIPPING BED EXAMPLE

Geocentric Sectoring System

STRAT LEFT

STRAT RIGHT
Geocentric Sectoring
Adjusting to Geologic Changes

DIPPING BED EXAMPLE

Geocentric Sectoring System

STRAT LEFT

STRAT RIGHT
Geocentric Sectoring
Adjusting to Geologic Changes

DIPPING BED EXAMPLE

Formation Change causing Off-Geocentric Sectoring

STRAT LEFT STRAT RIGHT
Geocentric Sectoring
Adjusting to Geologic Changes

DIPPING BED EXAMPLE
Formation Change causing Off-Geocentric Sectoring

STRAT LEFT

STRAT RIGHT
DIPPING BED EXAMPLE
Formation Change causing Off-Geocentric Sectoring

STRAT LEFT

STRAT RIGHT
Geocentric Sectoring
Adjusting to Geologic Changes

DIPPING BED EXAMPLE
Formation Change causing
Off-Geocentric Sectoring

STRAT LEFT

STRAT RIGHT
Geocentric Sectoring
Adjusting to Geologic Changes

DIPPING BED EXAMPLE
Formation Change causing Off-Geocentric Sectoring

STRAT LEFT

STRAT RIGHT
DIPPING BED EXAMPLE

Formation Change causing Off-Geocentric Sectoring

STRAT LEFT

STRAT RIGHT
Geocentric Sectoring
Adjusting to Geologic Changes

Return to Geocentric Sectoring System

STRAT LEFT

STRAT RIGHT
Return to Geocentric Sectoring System

STRAT LEFT

STRAT RIGHT
Geocentric Sectoring
Adjusting to Geologic Changes

Return to Geocentric Sectoring System

STRAT LEFT

STRAT RIGHT
Return to Geocentric Sectoring System

STRAT LEFT STRAT RIGHT
Geocentric Sectoring
Adjusting to Geologic Changes

Return to Geocentric Sectoring System

STRAT LEFT
STRAT RIGHT
Geocentric Sectoring
Adjusting to Geologic Changes

Return to Geocentric Sectoring System

STRAT LEFT

STRAT RIGHT
Summary and Conclusions

Geocentric Sectoring allows for:

• *Earlier Bed Boundary Detection*
 - Enhanced Reservoir Navigation

• *Refined RDIP Calculation*
 - Enhanced Structural Analysis

• *Refined RSTRIKE Sector Curve Extraction*
 - Highest Resolution Curve for Enhanced Petrophysical Analysis