A Tight Gas Sand Reservoir Characterization Approach in Delineating Different Benches across Lower Cotton Valley Rocks

Matthew Chumley¹, Bhaskar Sarmah², Joseph Anderson¹, Rojelio Medina², and Hoda Tahani²

¹Nadel and Gussman ²Halliburton Energy Services

GCAGS Explore & Discover Article #00316^{*} http://www.gcags.org/exploreanddiscover/2018/00316_chumley_et_al.pdf Posted September 29, 2018.

^{*}Article based on a full paper published in the *GCAGS Transactions* (see footnote reference below), which is available as part of the entire 2018 *GCAGS Transactions* volume via the GCAGS Bookstore at the Bureau of Economic Geology (www.beg.utexas.edu) or as an individual document via AAPG Datapages, Inc. (www.datapages.com), and delivered as an oral presentation at the 68th Annual GCAGS Convention and 65th Annual GCSSEPM Meeting in Shreveport, Louisiana, September 30–October 2, 2018.

ABSTRACT

The lower Cotton Valley–upper Bossier tight gas sand benches in North Louisiana offer significant challenges in identifying the best section to drill a horizontal well or for vertical reservoir stimulation. These rocks are typically characterized by low resistivity pay and varying pore throat size. Determining correct saturation and a reasonable permeability estimation in these rocks has always been a challenge. A wireline logging suite comprised of gamma spectral elemental, nuclear magnetic resonance (NMR), and dielectric tools were deployed to acquire data for characterizing reservoir properties such as a quantitative mineral volumetric, varying Archie's cementation exponent used for water saturation estimation, permeability based on pore size distribution, etc. Water saturation model based on standard resistivity tool response cannot account for a true water saturation estimation in these type of laminated sand-shale reservoirs because of poor vertical resolution of the standard resistivity tool. An advanced resistivity tool which can resolve the resistivity measurement into vertical and horizontal component to have a better estimate of resistivity of the sand was not part of the logging tool string. Instead, a computational approach from the standard resistivity tool data in developing a laminated sand-shale analysis model was used to compute water saturation at an enhanced vertical resolution. Understanding vertical hydraulic fracture height growth, which may connect productive zones, is important in the lower Cotton Valley which has multiple target sections. A dipole sonic tool was added to the logging suite to provide measurements of rock mechanical properties for a reservoir stimulation model. A complete petrophysical and rock mechanical model was built using "TightGasXpertTM," workflow, which integrates the enhanced saturation model with the pore size variation dependent permeability and 3D rock mechanical properties so as to take into account the frequent layering nature of the rocks and help in identifying the key parameters in delineating the best target section. This workflow offers a very robust methodology in characterizing low resistivity, frequently interbedded tight shale-sand formation.

Originally published as: Chumley, M., B. Sarmah, J. Anderson, R. Medina, and H. Tahani, 2018, A tight gas sand reservoir characterization approach in delineating different benches across lower Cotton Valley rocks: Gulf Coast Association of Geological Societies Transactions, v. 68, p. 109–123.

A Tight Gas Sand Reservoir Characterization Approach in Delineating Different Benches Across Lower Cotton Valley Rocks

Matthew Chumley*, Bhaskar Sarmah**, Joseph Anderson*, Rojelio Medina** and Hoda Tahani**

*Nadel and Gussman, **Halliburton

Stratigraphic Position and General Characteristics.

Some characteristics:

- Upper Jurassic Lower Cretaceous in age
- Predominantly, Sand Shale inter bedding
- The Lower Cotton Valley has relatively higher clay content as compared to Upper Cotton Valley rocks.
- Low resistivity pay
- Varying pore size; predominantly small pores.

Figure 2. Stratigraphic column showing the position of Cotton Valley Group. The pinks and the reds referred in this paper belongs to upper section of the Bossier Formation. (Courtesy "Shreveport Geological Society")

Location:

Figure 1. Geographical area of the past and current operations targeting the Cotton Valley formation. The blue star marks the well location in Lincoln Parish

- The Terryville field in Lincoln Parish was discovered in 1950s.
- Initially the cleaner upper Cotton Valley Sand packages were targeted.
- From the late 1970s and early 1980s operators started exploring the tight gas sands of Lower Cotton Valley.

Challenges:

OGIP under estimation	 Low resistivity pay Frequent shale lamination
Bound fluid vs Free fluid	• Pore size variation
Permeability estimation	 Porosity and permeability transformation.
Delineation of the best target section	 Integration of Petrophysical – rock mechanical properties and production potential.

Tight Gas Sand Evaluation

- Mineralogy and fluid volumes Probabilistic error minimization solving model.
- Bound Water and Free Fluid NMR technology
- Laminated Sand Shale Analysis- Multi Component Induction Tool
- Variable cementation exponent for Sw calculation
- Mechanical Properties- 2D and 3D
- Texture Perm- Using NMR distribution
- Net Pay Frac Stage Discrimination
- Productivity Frac Production Prediction

Tech Requirements:

Gamma Spectroscopy

NMR T1-T2 logging

Vertical and horizontal resistivity measurement

Dielectric Tool for variable "m" determination

Oriented WaveSonic[®] with Stoneley Slowness

Minifrac using wireline pressure and formation fluid sample tool.

or DFIT[™] Stress Calibration

Interpretation Flow Chart

Data QC, Environmental Correction, Temperature, Pressure and gradients estimate

Probabilistic error minimization solver for mineral & fluid volumes integrated with dielectric, NMR data. Laminated sand-shale analysis

NMR pore size distribution based permeability, relative permeability

3D-Stress computation accounting for frequent inter bedding of layers.

Gas in place, net pay thickness

Production prediction using different fracture half length for different pay zones.

Water Saturation comparisons

Figure 3. Sw comparison between laminated sand shale model and standard probabilistic error minimization mineral and fluid volume model.

- Overall the Laminated
 Sand shale model
 computed lesser water
 saturation across both
 the sections.
- The laminated Sand
 Shale model computed
 avg. 10.5% less water
 saturation as compared
 to the standard
 saturation model in the
 Upper Red Section.
- The laminated Sand Shale model computed avg. 22.5% less water saturation as compared to the standard saturation model across the Lower Red section.

Variable cementation exponent "m"

- Dielectric computed variable "m" is less than
 2 in most part across both the upper and the lower Red sections.
- The avg. computed "m" value across the upper Red is 1.77
- The avg. computed "m" value across the lower Red is 1.89.

Figure 4. Variable cementation exponent "m".

NMR application

A spectral BVI method was used to determine bound and free fluid

Large

Pores

1000

Permeability was computed using T2 distribution

Average Petrophysical Parameters

Benches	Top Depth Bottom Depth		Net Pay	Avg Por	Avg Sw	OGIP	Kgas	Kgh	
	feet	feet	feet	%	%	mscf/acre	md	md-ft	
UR 1	10957	11040	80.75	6.36	58.71	23387	0.000849	0.068528	
	11044	11164	119 5	6 79	47.30	51089	0 002787	0 333046	
	11044	11104	119.5	0.79	47.30	51089	0.002787	0.333040	
LR 1	11301	11400	98.5	5.14	54.22	25296	0.001505	0.148289	
LR 2	11405	11530	123.25	4.09	53.21	22111	0.000467	0.057609	

 Table 1. Average petrophysical parameters across different benches.

- The Upper Red 2 (UR 2) section has the highest average porosity, lowest average water saturation and highest "gas permeability height".
- Local knowledge on reservoir stimulation model indicates hydraulic fracture initiated in the upper Red 2 section actually grows into the upper Red 1 section.

Rock Mechanical parameters

Tops Input_4C:GRC0 (api) DEPTH Neu_Por_Lime Input_4C:R190 Proc_Sonic_Hoda:/DTC (uspf) vpvs_fast PR_V VM_V CPG_I 1.nput_4C:CALL (in) 0.45 -0.15 0.2 -0.2000. 1 1.5 -0.75 0. -0.75 0.75 1 0.	CPG_A 0.75 CPG_A 0.75 1	MechProp:CPG_I (psi/ft) 0.851. MechProp:CPG_A (psi/ft) 0.851.
Input_4C:RAIL (in) Input_4C:RHOB Input_4C:RHOB Input_4C:RT60 Qualtr Qual	CPG_A 0.75 1	MechProp:CPG_A (psi/ft) 0.85 1.
Input 4CSP (mV) Input 4CPT(0)		
Input_4C:BSZ (in) Crossover		
Wash out		
	1	
		5
	{	5
	{	2
	5	5
	3	3
	}	3
		Con a
	ł	ala
	Į	- 2
	Ž	2
	5	5
	7	
		A.
	ł ż	R.
	Ş	5.
	E S	Se so
		l l
		2
	3	5
	5	5
	ļ	4
	}	5

Figure 6. Rock mechanical properties across Upper and the Lower Red sections.

- A 3D rock mechanical
 model was used to
 compute petrophysical
 parameters using
 stoneley slowness and
 dipole sonic data.
- The Upper red section showing a lesser difference between the 2D and 3D model computed closure pressure gradients (shade yellow in the last track). This indicates the upper Red section to be relatively less heterogeneous rocks as compared to the lower Red section.

Production Prediction

 The Upper Red 2 (UR 2) predicts a higher initial production and better decline rate as compared to the other three sections.

Figure 7. production prediction for 240 months for different section for a single fracture.

Tight Gas Sand interpretation presentation

Tops	Correlation	Depth	Density / Ne	Resistivity	Mudlog Cuttings	Minerals & Fluid	Porosity	Lithology Lam	Porosity Lam	Saturation	Mudlog G	as T2	T1	Modulus I	Modulus	CPG_Iso	CPG_Anis	Permeability	Gas In Pla	Gas Flow Rate
Tops	Input_4C:GRCO 0. —— 150.	DEPTH (FT)	Neu_Por_Li 0.450.15	RT90 0.2 - 2000.	Shale_Grey	Clay	Msol:PhiT 0.2 0.	Laminated	PHIT 0.2 0.	SwLam 1 0.	C1 0. 2500.	Proc_MRIL:T2D 0.5	Proc_MRIL:T1D 0.5 5000	PR_V 0 0.5	YM_V 0 15.	CPG_I 0.75	CPG_A 0.75	PERM:Perm 1.0E-6 - 1.	CumTota 0 100.	FHL 1 ft
	Input_4C:CALI 6. ———— 16.		RHOB 1.95 - 2.95	RT60 0.2 - 2000.	Siltstone	Quartz	Msol:Phie 0.2 0.	Dispersed	PHIE 0.2 0.	Msol:Sw 1 0.	C2 0. 2500.			PR_H 0 0.5	YM_H 0 15.	CPG_I 0.75 - 1.	CPG_A 0.75-1.	PERM:KGAS 1.0E-6 — 1.	Cum Tot	FHL 100 ft
	Input_4C:SP -80. —— 20.		0. — 10.	RT10 0.2 - 2000.	Sandstone	上imestone	Msol:BVW 0.2 0.	Structural	0.2 0.	SW-Lassi>S	C3 0. 2500.									FHL 200 ft
	Input_4C:BSZ 6 16.		Crossover		Limestone	CBW	Gas	Porosity	Gas_Lam	SW-Msol>S	IC4 0. 2500.									FHL 300 ft
	Wash out		Separation			Water	Water	Silt	Water_Lam		0. 2500.									FHL 400 ft
						Gas		SANDSTONE			0. 2500.							2		FHL 500 ft
			2	}						2	4			J.	٤.			3		
		11000	7	Ę				z 🙎		2				2	2			<u> - 2</u>	[
	N.		2	۲ ۲		≣		*		5				3			Į,			
pper R			\$	\$						2	3			2	5	ł	1	Z.		
.ed Sar	2 may			}				3		3	And the second			×.	2	Į	ł	3		
đ			Ş							$\overline{\mathbf{x}}$	\$			Nur la	1	Į	Į	2		
			3	<u>ک</u>		E 3	3			5	Į	KUS I		-	No.			<u>Z</u>		
				}						ž,	\$			*	2		ł	3		
				٤)}				×.			3		
		11200		7			- 🐔			-	(*	5					
				ξ			3		3		Ş			3		١Ş	HŞ	\mathbf{v}		
			5	ξ					- 5	-	\$			3	Ş	12	ΙŞ	2		
	\mathbf{A}			\$			3				ł			2	Ì,	ΙĽ				
	1 A			ì			3			5	2			}	×.	}	Į	5		
	Avery		1	1						N.	3				5		3	3		
	R		- 7	}						2	2			~						
5			3	}						3	La			4	and a second	- { -	÷ {	N.		
ower R		11400	-	ł			- 2			۶				÷				-		
ed Sa	¥.			}						ş	2			3	1			£		
д	5		- 1	ž		i i		ζ 🖇		2	ζ			3	*			~		
			4	{			2				\$				X	1	$\left\{ \right\}$	\mathbf{Z}		
	$\boldsymbol{<}$		1	5				<		2	\$			2	2	- {	I {			
				Ł							S			4	<u>}</u>			\sim	1	

Figure 8. "TightGasXpert" presentation.

Conclusions:

- A comparative evaluation that includes understanding of reservoir storage, deliverability, productivity and a vertical stress profile determination is very important in delineating the stacked low resistivity lower Cotton Valley sand-shale laminated play.
- Conventional triple combo logging suite cannot adequately address all the challenges offered by low resistivity and variable pore size in the tight sand reservoirs.
- The "TightGasXpertTM" workflow which integrates petrophysical and rock mechanical properties along with production capacity for all the probable benches in a stacked play, helps in delineating the primary target.

Acknowledgements / Thank You / Questions

The authors thank the management of Nadel & Gussman for the release of data and permission to present this case study.

The authors also thank Halliburton Energy Services for providing the opportunity to work on the project.

References

- Liu, S., Spain, D.R., Devier, C., Buller, D., Murphy, E. 2011. Integrated Petrophysical Study of a North America Tight Gas Sand: Cotton Valley Formation, East Texas. SPWLA 52nd Annual Logging Symposium, May 14-18, 2011
- Marshall, D., Gardner, J.S., Mardon, D., and Coates, G.R, Method for Correlating NMR Relaxometry and Mercury Injection Data, paper SCA-9511 presented at the 1995 Society of Core Analyst /International Symposium, San Francisco, 12-14 September.
- Modeland, N., Buller, D. Middaugh, Wyszynski, R., Sumrow, H., Sumrow, H., Eckerman, S. and Graham, J. 2013. Applying Petrophysics and Systematic Completion Science to Increase Potential: A Terryville Field Tight Gas Case History. Paper SPE 163968-PP, presented at SPE Middle East Unconventional Gas Conference and Exhibition, Muscat, Oman, 31 January-2 February 2011.
- Salvador, A., 1985, Chronostratigraphic and geochronometric scales in COSUNA stratigraphic correlation charts of the United States: AAPG Bulletin, v. 69, p. 181-189.
- Seni, Steven J., and M. P. A. Jackson, 1984, Sedimentary record of Cretaceous and Tertiary salt movement, East Texas Basin: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 139, 89 p.
- Spain, D.R., Smith, Liu, S., and Devier C., 2011. Petrophysical Rock Typing of Tight Gas Sands-Beyond Porosity and Saturation: Example from the Cotton Valley Formation, East Texas: Paper SPE 142808-PP, presented at SPE Middle East Unconventional Gas Conference and Exhibition, Muscat, Oman, 31 January-2 February 2011.
- Thomas, E.C. and Stieber, S.J. 1975. The Distribution of Shale in Sand-stones and its Effect Upon Porosity.
- Trans., SPWLA 16th Annual Logging Symposium, 4-7 June, Paper T, 1-15
- Todd, R. G., and R. M. Mitchum, Jr., 1977, Seismic stratigraphy and global changes of sea level, Part 8, Identification of Upper Triassic, Jurassic, and Lower Cretaceous seismic sequences in Gulf of Mexico and offshore West Africa, in Payton, C. E., ed., Seismic stratigraphy-applications to hydrocarbon exploration: AAPG Memoir 26, p. 145-164.

About the presenter:

Bhaskar Sarmah Sr. Tech Advisor, Petrophysics SE Tech Team, Houston, Texas

BhaskarBikash.Sarmah@halliburton.com

Phone: 281-988-2124

www.halliburton.com/

