Influence of Shale Distribution Types on the Effective Porosity of Sandstone Reservoirs

Gregory J. Ferguson², James J. Willis^{1,2}, Duncan S. McIntosh, Jr.³, Jesse W. Zwennes³, James Pasley², and Garrett M. Goettel²

¹Odyssey International, LLC, 7190–C Cemetery Hwy., St. Martinville, Louisiana 70582

²School of Geosciences, University of Louisiana at Lafayette, Hamilton Hall, Rm. 323, 611 McKinley St., Lafayette, Louisiana 70503

³Formerly at University of Louisiana at Lafayette.

GCAGS Explore & Discover Article #00334^{*} http://www.gcags.org/exploreanddiscover/2018/00334_ferguson_et_al.pdf Posted September 29, 2018.

*Article based on a full paper published in the *GCAGS Transactions* (see footnote reference below), which is available as part of the entire 2018 *GCAGS Transactions* volume via the GCAGS Bookstore at the Bureau of Economic Geology (www.beg.utexas.edu) or as an individual document via AAPG Datapages, Inc. (www.datapages.com), and delivered as an oral presentation at the 68th Annual GCAGS Convention and 65th Annual GCSSEPM Meeting in Shreveport, Louisiana, September 30–October 2, 2018.

ABSTRACT

Most previous work that analyzed the effect of the three distribution types of shale—dispersed, structural, and laminar—within a sandstone reservoir only considered quantification using either single-type distribution or either laminar-dispersed or laminar-structural two-type distribution models. Only recently has it been quantitatively analyzed for the third two-type distribution model, namely structural-dispersed, and the implications of three-type distribution by using a straightforward deterministic approach, involving total porosity versus shale volume graphical crossplot and mathematical analysis. We derived the relationships within an effective porosity versus shale volume system and tested the methodology using a case study with conventional triplecombination, as well as nuclear magnetic resonance log data. Results indicated in this case study that, although the dominant shale distribution type was laminar shale, the presence of dispersed shale reduced the sandstone-fraction effective porosity and the presence of structural shale further reduced the useful sandstone-fraction porosity, as opposed to a laminar-dispersed or laminar-structural model that would yield the most optimistic result.

Originally published as: Ferguson, G. J., J. J. Willis, D. S. McIntosh, Jr., J. W. Zwennes, J. Pasley, and G. M. Goettel, 2018, Influence of shale distribution types on the effective porosity of sandstone reservoirs: Gulf Coast Association of Geological Societies Transactions, v. 68, p. 195–218.

Influence of Shale Distribution Types on the Effective Porosity of Sandstone Reservoirs

Gregory J. Ferguson¹ James J. Willis^{1,2} Duncan S. McIntosh, Jr.¹ Jesse W. Zwennes¹ James Pasley¹ Garrett Goettel¹

> ¹University of Louisiana at Lafayette ²Odyssey International, LLC

Overview

- Nature & Significance of Problem
- Shale Distribution Types: Previous Work and Methodologies
- Methodology
 - Volume of Shale and Effective Porosity
 - Quantification of Shale Distribution Types
- Case Study
 - Nuclear Magnetic Resonance Log
 - Crossplots
 - Ratio Analysis
- Conclusions

Nature & Significance of Problem

Why Do Shale Distribution Types Matter?

 Common methodology leads to reservoir potential being overestimated

Nuclear Magnetic Resonance Logs... Why not just use triple-combo?

- Adding a new method of deriving volume of shale allows comparison of methodologies
- Adds potential for *direct measurement* of
 - Reservoir Fluids
 - Total & Effective Porosity
 - Clay Bound Water

Shale Distribution Types History

Thomas & Stieber (1975)

- Defined Laminar, Dispersed, & Structural Shale
- Acknowledged All Combinations
 - Ignored Structural Shale
- Used Total Porosity vs Vsh to Define Laminar-Dispersed System

Juhasz (1986)

- Used Total Porosity vs Vsh & Effective Porosity vs Vsh
- Quantified All Single-Type Models
- Quantified Two-Type Models
 - Laminar-Dispersed
 - Laminar-Structural

McIntosh (2017)

- Used Total Porosity vs Vsh
- Quantified Two-Type Model
 - Dispersed-Structural
- Quantified Three-Type Model in Two Scenarios
 - Three-Type: Dispersed-Required
 - Three-Type: Structural-Required

Total Porosity Rhombus

$Vsh_T = Vsh_L + Vsh_D + Vsh_S$

 $\Phi_{total} = \Phi_{SS}(1 - Vsh_L) - Vsh_D + (\Phi_{sh_D} * Vsh_D) + (\Phi_{sh_S} * Vsh_S) + (\Phi_{sh_L} * Vsh_L)$

Effective Porosity Rhombus

 $Vsh_{T} = Vsh_{L} + Vsh_{D} + Vsh_{S}$ $\Phi_{effective} = \Phi_{total} - Vsh_{T} * \Phi_{sh}$

$$\begin{split} \Phi_{effective} &= \Phi_{SS}(1 - Vsh_L) - Vsh_D \\ &+ (\Phi_{sh_D} * Vsh_D) + (\Phi_{sh_S} * Vsh_S) + \\ (\Phi_{sh_L} * Vsh_L) \\ &- (\Phi_{sh_D} * Vsh_D) - (\Phi_{sh_S} * Vsh_S) \\ &- (\Phi_{sh_L} * Vsh_L) \end{split}$$

 $\Phi_{effective} = \Phi_{SS}(1 - Vsh_L) - Vsh_D$

Single-Type Models

Laminar $Vsh_L = 1 - \frac{\Phi_{effective}}{\Phi_{ss}}$ Dispersed $Vsh_D = \Phi_{ss} - \Phi_{effective}$

Structural

 $\Phi_{effective} = \Phi_{ss}$

Increasing Laminar Shale

Increasing Dispersed Shale

Increasing Structural Shale

Laminar-Dispersed Model

$$Vsh_{T} = Vsh_{L} + Vsh_{D} + \frac{Vsh_{S}}{Vsh_{D}}$$
$$Vsh_{D} = Vsh_{T} - Vsh_{L}$$

$$\Phi_{effective} = \Phi_{ss}(1 - Vsh_L) - Vsh_D$$

$$\Phi_{effective} = \Phi_{ss}(1 - Vsh_L) - (Vsh_T - Vsh_L)$$

$$Vsh_L = \frac{\Phi_{effective} - \Phi_{ss} + Vsh_T}{1 - \Phi_{ss}}$$

Laminar-Structural Model

$$Vsh_{T} = Vsh_{L} + Vsh_{P} + Vsh_{S}$$
$$Vsh_{L} = Vsh_{T} - Vsh_{S}$$
$$Peffective = \Phi_{ss}(1 - Vsh_{L}) - Sh_{P}$$

$$Vsh_S = \frac{\Phi effective}{\Phi ss} - Vsh_T - 1$$

 $\Phi_{effective} =$

 $\Phi_{effective}$ =

 $(Vsh_T - Vsh_S))$

Vsh_p

Dispersed-Structural Model

el

$$Vsh_{T} = Vsh_{E} + Vsh_{D} + Vsh_{S}$$

$$Vsh_{D} = Vsh_{S} - Vsh_{T}$$

$$\Phi_{effective} = \Phi_{ss}(1 - Vsh_{E}) - Vsh_{D}$$

$$Vsh_{D}$$

$$\Phi_{effective} = \Phi_{ss} - (Vsh_{S} - Vsh_{T})$$

$$Vsh_{S} = Vsh_{T} + \Phi_{ss} - \Phi_{effective}$$

Two-Type Models

Three-Type System Example: Dispersed-Required

Laf yette

$$Vsh_T = Vsh_L + Vsh_D + Vsh_S$$

$$R = \frac{Vsh_S}{Vsh_L}$$

$$Vsh_S = R * Vsh_L$$

$$Vsh_T = Vsh_L + Vsh_D + R * Vsh_L$$

$$Vsh_L = \frac{Vsh_T - Vsh_D}{1 + R}$$

$$\Phi_{effective} = \Phi_{ss}(1 - Vsh_L) - Vsh_D$$

$$F_{fective} = \Phi_{ss}\left(1 - \frac{Vsh_T - Vsh_D}{1 + R}\right) - Vsh_D$$

$$Vsh_D = \frac{\Phi_{ss}(1+R-Vsh_T) - \Phi_{effective}(1+R)}{1+R-\Phi_{ss}}$$

Shale Distribution Type Effect on Matrix & Effective Porosity

Sandstone Fraction Effective Porosity

$$\phi_{total} = \phi_{ss_{clean}} * (1 - Vsh_L) + (Vsh_L * \phi_{sh}) - Vsh_D + (Vsh_D * \phi_{sh}) + (Vsh_S * \phi_{sh})$$

 $\phi_{effective} = \phi_{total} - (Vsh_T * \phi_{sh})$

Fraction Vss = 1 - VshL

Laminar Shale Fraction = *VshL*

Sandstone Matrix

$$\phi_{e_{ss}} = \frac{\phi_{ss_{clean}} * (1 - Vsh_L) + (Vsh_L * \phi_{sh}) - Vsh_D + (Vsh_D * \phi_{sh}) + (Vsh_S * \phi_{sh}) - (Vsh_L * \phi_{sh}) - (Vsh_D * \phi_{sh}) - (Vsh_S * \phi_{sh}) - (Vsh_L * \phi_{sh}) - (Vsh_S * \phi_{sh$$

$$\phi_{e_{ss}} = \phi_{ss_{clean}} - \frac{Vsh_D}{(1 - Vsh_L)}$$

 $\phi_{e_{ss}} = \frac{\phi_e}{1 - Vsh_L}$

Case Study

- 222' logged section, mostly hydrocarbon bearing from GOM
 - Triple Combo Log
 - $\Phi_{\text{total}} \operatorname{vs} \operatorname{Vsh}_{\operatorname{GR}}$
 - $\Phi_{\text{effective}}$ (from Φ_{D} vs Vsh_{GR})
 - $\Phi_{effective}$ (from Φ_{ND} vs Vsh_{GR})
 - Nuclear Magnetic Resonance Log
 - Φ_{total} vs Vsh_{CBW}
 - $\Phi_{\text{effective}} \, \text{vs} \, \text{Vsh}_{\text{CBW}}$

Lafyette

Establishing Rhombus Points

Lafyyette

- Triple Combo
 - Derived Vsh_{GR} & $\Phi_{\text{effective}}$
- Nuclear Magnetic Resonance
 - Derived Vsh_{CBW}
- Determined "Clean" & "Shale" intervals to be used for Endmembers
 - Clean zone still had CBW & Shale Zone still had $\Phi_{\text{effective}}$
 - Scaling Factor applied to Vsh_{GR} & Vsh_{CBW}
 - Resulting laminar line was projected to x- & y- crossings
- Calculate Dispersed Point & Structural Point from Results

Initial Analysis Example

Comparison of Corrected Vsh_{GR} & Vsh_{CBW} Laf yette

Vsh GR

Final Effective Porosity vs. Vsh Crossplots

$\Phi_{\text{effective}}$ (ND) vs. Vsh_{GR}

$\Phi_{\text{effective}}$ (NMR) vs. Vsh_{CBW}

Shale Distribution Analysis Triple-Combination Log Based

Shale Distribution Analysis NMR Log Based

Conclusions

- Use of $\Phi_{\text{eff-ND}}$ corrects for differential measurement of shale and hydrocarbon effects
 - Commonly used $\Phi_{total-D}$ or $\Phi_{total-ND}$ does not correct for shale and hydrocarbons $\rightarrow \Phi_{total-D}$ errs with hydrocarbons and $\Phi_{total-ND}$ errs as Vsh increases
 - Better to use $\Phi_{\text{eff-ND}}$ and thus Effective Porosity vs. Vsh analysis
- NMR_{log} adds a valid & independent measure of Vsh_T, Φ_{total} , & $\Phi_{effective}$
- Triple Combination Log and NMR_{log} largely agree in case study
 - Overall laminar trend suggested
 - Both suggest dominance of structural shale over dispersed shale in the log run
- $\Phi_{\text{effective}}$ is vital for producibility of a reservoir & previous methodology overestimates and is thus overly optimistic
 - Our methodology demonstrates a range of values rather than a single optimistic value