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ABSTRACT 
For about 30 m.y. from about 130 to 100 Ma during the Early Cretaceous Barremian to Albian ages, the proto-Gulf of 

Mexico was partly encircled by a giant carbonate shelf from Florida to Texas and south into northern Mexico and by isolated 
carbonate platforms in eastern Mexico, the Yucatan Peninsula/Platform and Central America.  These strata have been im-
portant hydrocarbon reservoirs associated with source rocks.  In addition, these southern North and Central American car-
bonate strata archive important oceanic signals such as carbon chemozones, oceanic anoxic events and sea-level changes. 

The Early Cretaceous Caribbean Biotic Province was composed of many of the same marine species as in the Mediterrane-
an and Asian provinces as well as endemic species.  Biostratigraphic zonation of the Barremian, Aptian, and Albian stages in 
the Gulf region has evolved since 1956 and is now more precisely defined by first appearance and last appearance datums 
(FAD/LAD) of calcareous nannofossils, nannoconids, colomiellids, and planktic foraminifers in numerous outcrop and drill hole 
sections.  Rudist bivalve zones are recognized in cores and outcrops.  However, larger benthic foraminiferal zones have not 
been updated until now.  Stratigraphic correlation of these complex carbonates and associated rocks establishes the context of 
reservoir facies and their chronostratigraphic relations globally.  The principal goal of this contribution is to present a practical 
biostratigraphy of the larger benthic foraminifers. 

Six Barremian to Albian benthic foraminiferal biozones are here defined by the first occurrences or overlapping ranges in 
the Gulf of Mexico region of the United States, Mexico, and Central America.  These zones are in ascending order:  (1) Choffa-
tella decipiens Interval Range Zone (IRZ), Barremian from FAD of Choffatella decipiens to FAD of Palorbitolina lenticularis;  
(2) Palorbitolina lenticularis Total Range Zone (TRZ), lower Aptian; (3) Paracoskinolina sunnilandensis IRZ, lower to upper 
Aptian from LAD of Palorbitolina lenticularis to FAD Mesorbitolina texana; (4) Mesorbitolina texana IRZ, uppermost Aptian to 
lower Albian from FAD Mesorbitolina texana to FAD of Carseyella walnutensis; (5) Carseyella walnutensis IRZ, middle to lower 
upper Albian, from FAD to FAD of Paracoskinolina coogani; and (6) Paracoskinolina coogani TRZ, uppermost Albian. 
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INTRODUCTION 
For about 30 m.y. from about 130 to 100 Ma during the 

Barremian to Albian ages, the proto–Gulf of Mexico westward 
from Florida to Texas and south into Mexico and Central Ameri-
ca was partly encircled by a giant carbonate shelf and by isolated 
carbonate platforms in eastern Mexico and the Yucatan Penin-
sula/Platform and Central America (McFarlan and Menes, 1991; 
Padilla y Sánchez, 2016; Wilson and Ward, 1993).  This Caribbe-
an biotic province shared many marine species with the Mediter-
ranean and Asian provinces.  Lower Cretaceous strata overlie 
Upper Jurassic rocks and underlie Upper Cretaceous strata.  

These southern North American and Central American Lower 
Cretaceous carbonate strata record important oceanic signals 
such as oceanic anoxic events and sea-level changes (Phelps et 
al., 2014; Scott et al., 2019).  Furthermore, these carbonates have 
been important hydrocarbon reservoirs and are commonly associ-
ated with source rocks (Fritz et al., 2000; Scott, 1993; Waite, 
2009).  The lithostratigraphy of the region documents vertical 
and lateral changes that are classified as different groups and 
formations (Fig. 1).  Stratigraphic correlation of these complex 
carbonates and associated marls and shales establishes the con-
text of reservoir facies and their chronostratigraphic relations 
globally.  

The principal goal of this contribution is to present a practi-
cal biostratigraphy of the larger benthic foraminifers.  A biostrati-
graphic zonation of the Barremian, Aptian, and Albian stages in 
Mexico was first based on colomiellids and benthic foraminifers 
from a limited set of drill holes (Bonet, 1956).  The succession of 
larger benthic foraminifers in the Gulf Coast and particularly in 
the Trinity, Fredericksburg, and Washita groups was related to 
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rudist and ammonite successions formulating a basis of a practi-
cal zonation (Coogan, 1977).  Subsequently, carbonate biostratig-
raphy in the Gulf of Mexico region, New Mexico, Arizona, and 
northern Mexico was more precisely defined by pelagic calcare-
ous organisms including nannofossils, nannoconids, colomiellids, 
and planktic foraminifers (Longoria, 1984; McNulty, 1985).  
However, these microfossils are not present in the shallow-water 
platform carbonates where larger benthic foraminifers such as 
orbitolinds are common.  The larger foraminifers are readily 
identified in thin sections of cores and drill cuttings because of 

their complex internal wall structures and diameters greater than 
1–2 mm.  More recently, the large rudist bivalves commonly seen 
in cores and outcrops have been used to define biozones in Mexi-
co and Texas (Scott and Filkorn, 2007; Scott and Hinote, 2007).   

Fossil stratigraphic ranges in this study are cataloged in 
Cret2017CS database, which is composed of 123 global outcrop 
and drill hole sections calibrated in mega-annums (Ma) to the 
2016 geologic time scale (GTS2016) (Ogg et al., 2016).  The 
process of integrating and calibrating numerical ages is by X/Y 
plots of each section to the GTS2016 and extending the ranges by 

Figure 1.  Lower Cretaceous lithostratigraphy of North American Gulf Coast: Louisiana and South Texas stratigraphy 
(Bartberger et al., 2003; Donovan et al., 2015; McFarlan and Menes, 1991; Scott, 1990, 1993; Scott et al., 2019, 2020); eastern 
Mexico (McFarlan and Menes, 1991; Omaña et al., 2016); Guatemala (Scott, 1996); and Honduras (Molina Garza et al., 2017; Scott 
and Finch, 1999).  Numerical ages from GTS2016/GTS2020.   



117 Barremian-Albian Larger Benthic Foraminiferal Zones (Lower Cretaceous),                                  
Gulf of Mexico Region:  A Key to Correlating Carbonate Reservoirs 

the correlation line of synchroneity (CLS).  This database was 
constructed using the graphic correlation technique (Carney and 
Pierce, 1995) and the GraphCor software (Hood, 1995) and 
builds on a previous database (Scott, 2014). 

 
HYDROCARBON EXPLORATION-

PRODUCTION SIGNIFICANCE 
The Comanche Carbonate Shelf in the U.S. Gulf Coast and 

in eastern Mexico and Yucatan Peninsula has a long history of 
challenging hydrocarbon exploration from the shelf margin and 
in the landward shallow shelf since the mid-twentieth century.  
During the twenty-first century, however, exploration in the Ea-
gle Ford Group has overshadowed exploration of Lower Creta-
ceous limestones.  The Poza Rica Trend in Veracruz, Mexico, 
was discovered in 1930 (Barnetche, 1951) in the El Abra Lime-
stone (Fig. 1) and has been one of the most significant reservoirs 
in the Comanche Shelf.  Primary intergranular porosity in shelf-
margin facies was greatly modified by early cementation and 
lithification, followed by leaching and then fracturing (Enos, 
1977).  Forereef slope grainstones comprise the associated Tama-
bra Limestone (Fig. 1) and are also important reservoirs (Fritz et 
al., 2000). 

The middle-upper Albian Stuart City Limestone, aka Ed-
wards Formation (Fig. 1), in Texas was the early exploration 
target on the U.S. Comanche Shelf.  Three phases of exploration 
and production were late 1950s to early 1960s, late 1970s to early 
1980s, and a revival in 1999 to 2008 (Waite, 2009).  In 1954, 
Stanolind discovered the Stuart City Field in LaSalle County 
(Bebout and Loucks, 1974).  During the following 8 years, 16 
additional fields were discovered.  By 1976, 115 hydrocarbon 
fields had been discovered in Lower Cretaceous carbonates in the 
Gulf Coast that produced at least 10 MMBO (million barrels of 
oil) or 60 BCFG (billion cubic ft of gas) (Nehring and Van Dri-
est, 1981).  Porosity is facies-controlled in part and consists of 
intraparticle, interparticle. and fracture types of about 5% and 
rarely up to 20%; permeability generally is 0.5 md and rarely up 
to 10 md (Bebout et al., 1977; Waite, 2009).  

Exploration was revived in 1999–2008 in part because of 3D 
seismic records, horizontal drilling techniques, sequence strati-
graphic concepts, and new depositional models.  Progradation of 
shelf facies and down-to-the-basin faulting of the Stuart 
City/“Edwards” Limestone has potential where porosity is en-
hanced by faulting (Fritz et al., 2000).  An example of the suc-
cessful utility of new technology is in Pawnee Field, Bee County, 
Texas, discovered by Shell in the early 1960s.  Beginning in the 
late 1990s, Pioneer Natural Resources began an extensive hori-
zontal drilling program in Pawnee Field in the Stuart City Lime-
stone (Waite et al., 2007).  Estimated ultimate reserves were pro-
jected at ~300 BCF dry gas from about 11,000 to 15,000 ft depth.  
Eight other fields in South Texas produce from 15 to 600 BCF 
dry gas (Waite, 2009). 

In the 1980s, the Barremian-Aptian Sligo Limestone (Fig. 1) 
was an active exploration play producing mainly natural gas 
(Modica and Katz, 2008).  Karstification was a major source of 
porosity in the shelf-margin play, although complex diagenetic 
processes made reservoir prediction difficult (Bebout et al., 
1981).  Subsequently, Sligo foreslope carbonate wedges were 
promoted as a new play concept analogous to the Tamabra Lime-
stone (Fritz et al., 2000). 

 
AN ARCHIVE OF                                                           

CRETACEOUS OCEANIC EVENTS 
During Barremian through Albian time, 130 to 100 Ma, the 

Gulf of Mexico Basin was near 30⁰ north latitude and was open 
eastwards towards the Atlantic Ocean and westwards into the 
Pacific Ocean (Hay et al., 1999).  The several Mexican tectonic 
blocks were conjoined in place and Central American blocks 

were in transit southward along the Pacific coast of Mexico (Hay 
et al., 1999; Padilla y Sánchez, 2016).  Major sea-level rises in 
the Aptian and in early and in middle-late Albian inundated 
North America and the Arctic (McFarlan, 1977; Oboh-Ikuenobe 
et al., 2008; Phelps et al., 2014; Scott et al., 1988, 2019; Young, 
1986).  Aptian-Albian sea-surface currents were principally 
clockwise from the west across Caribbean islands then north-
westward across Mexico then eastward across the U.S. Gulf 
Coast (Johnson, 1999). 

Rudist bivalves are the most commonly recognized fossil in 
Barremian-Albian reefal paleocommunities.  However massive 
and branching colonial corals are equally or even more abundant 
than rudists in some buildups (Scott, 1988, 1990, 1995).  Both 
groups had different modes of life, corals cemented upon a sub-
strate and built a framework below normal wave base, and 
Barremian-Albian rudists reclined upon or were implanted into 
the coarse-grained substrate above wave-base.  Rarely did they 
encrust one another forming clumps but not frameworks.  During 
the Albian, however, rudists replaced corals in abundance and 
importance in shelf-margin and interior-shelf patch reef buildups.  
Environmental factors were important in the replacement of the 
more stenotopic corals by the more eurytopic rudists (Scott, 
1988, 1995).  Larger benthic foraminifers are associated with 
both rudists and corals in shallow-water, oxygenated environ-
ments and in upper slope deposits.  During this 25 m.y. span, the 
oceans warmed and became more nutrient-rich; low-oxygen bot-
tom water masses shoaled flooding the shelf margins and shallow 
shelves stressing the paleocommunities (Alexandre et al., 2010; 
Petrizzo et al., 2008).  Early Cretaceous oceanic anoxic events 
are recorded in Comanchean shelf carbonates and basinal mud-
stone in Texas, Arizona, Nuevo Leon, and Sonora (Madhavaraju 
et al., 2015; Scott et al., 2018).  

 
LARGER BENTHIC FORAMINIFERAL             

BIOSTRATIGRAPHY 
Six biozones are here defined by the first occurrences or 

overlapping ranges of Barremian to Albian benthic foraminifers 
in the Gulf of Mexico region from the U.S. Coastal Plain west to 
Arizona and south to the states of Sonora, Coahuila and Nuevo 
Leon in Mexico; the biozones are recognized in Central America 
as well.  Key datum points are first/last occurrences (FO/LO) in a 
section that are extended and compiled in multiple sections as 
more complete ranges of first/last appearance datums (FAD/
LAD) (Fig. 2).  The FADs of zone name-bearers were calibrated 
to numerical ages in GTS2016 (Gradstein et al., 2004; Ogg et al., 
2016) that compose the CRET2017CS Database (Scott, 2014).  
This was the most well documented time scale at that time; these 
ages have not yet been updated to 2020 geologic time scale 
(GTS2020) (Gale et al., 2020).  The foraminiferal zones are sum-
marized below in ascending stratigraphic order.  

Choffatella decipiens (Schlumberger) Interval Range Zone 
(IRZ) (Fig. 3.14); Barremian; FAD of Choffatella decipiens to 
FAD of Palorbitolina lenticularis.  Associated species are the 
total range of Sabaudia minuta and the lowermost part of the 
range of Paracoskinolina sunnilandensis.  Choffatella decipiens 
in the Honduran Atima Limestone identifies this zone in the 
Chortis block (Scott and Finch, 1999).  This species is also in the 
lower part of the Ixcoy Limestone in Guatemala above Nannoco-
nus bucheri (Scott, 1996).  

The stratigraphic range of the Choffatella decipiens IRZ in 
the Cupido Formation exposed in the Potrero Garcia section, 
Nuevo Leon State, Mexico, is approximately 335 m thick, and it 
is overlain by Palorbitolina lenticularis.  Nearby in the Busta-
mante Canyon section it overlaps with the FO of Palorbitolina 
lenticularis (Conklin and Moore, 1977; Selvius and Wilson, 
1985).  

Palorbitolina lenticularis (Blumenbach) Total Range Zone 
(TRZ) (Figs. 3.12 and 3.13); lower Aptian; FAD approximates 



Figure 2.  Barremian to Albian benthic foraminiferal biozones in the North American Gulf of Mexico region.  Ranges in Cret-
2017CS database composed of 123 global outcrop and drill hole sections calibrated to mega-annums (Ma) in the Geologic Time 
Scale 2016 (Ogg et al., 2016; solid bar).  Dashed range bar is published range (Arnaud-Vaneau and Premoli Silva, 1995; Arnaud-
Vanneau and Sliter, 1995).  Blue bars highlight ranges of zone named species.   
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base Aptian in the Sligo Formation in Texas and in equivalent 
carbonate units in Mexico, Spain, France, and Croatia.  Associat-
ed species are the FAD of Voloshinoides sonoraensis and Pseu-
docyclammina hedbergi, which are overlapped by Paracos-
kinolina sunnilandensis (Fig. 2). 

The base of Palorbitolina lenticularis is in the uppermost 
part of the Cupido Formation in Nuevo Leon, and in three out of 
four sections it is stratigraphically higher than the LO of 
Choffatella decipiens (Selvius and Wilson, 1985).  However, in 
one section it overlaps slightly with the uppermost range of 
Choffatella decipiens in the basal Aptian (Fig. 2).  Palorbitolina 
lenticularis is globally distributed in the Tethyan Realm and 
ranges from uppermost Barremian to lowermost upper Aptian 
(Husinec, 2001; Peybernès, 1982; Schroeder and Cherchi, 1979; 
Simmons and Williams, 1992; Simmons et al., 2000). 

Paracoskinolina sunnilandensis (Maync) Interval Range 
Zone (Figs. 3.9–3.11); lower to upper Aptian; LAD of Palorbito-
lina lenticularis to FAD Mesorbitolina texana.  Associated spe-
cies are Voloshinoides sonoraensis and Pseudocyclammina hed-
bergi and the FAD of Nezzazata isabella. 

The characteristic species, Paracoskinolina sunnilandensis, 
first appears in the Barremian and its LAD is in the lower Albian.  

Mesorbitolina texana (Roemer) Interval Range Zone (Figs. 
3.6–3.8); uppermost Aptian to lower Albian; FAD Mesorbitolina 
texana to FAD of Carseyella walnutensis.  Associated are the 
FOs of Nezzazata simplex, Coskinolinoides texanus, Cuneolina 
walteri/parva, Pseudonummoloculina heimi, Hemicyclammina 
whitei, Buccicrenata subgoodlandensis, Vercorsella scarsellai, 
Vercorsella arenata, and Mesorbitolina subconcava.  Cos-
kinolinoides texanus in the Honduran Atima Limestone identifies 
this zone in the Chortis block (Scott and Finch, 1999).  Mesorbi-
tolina subconcava, uppermost Aptian to upper Albian (Schroeder 
and Neumann, 1985), was reported from the top of the Atima 
Limestone, Honduras; also, in the uppermost Atima interval is 
the upper Albian rudist Kimbleia sp. (Scott and Finch, 1999).  In 
Guatemala, Mesorbitolina subconcava is in the Cobán Limestone 
(Scott, 1996). 

The FO of Mesorbitolina texana is in the uppermost Aptian 
in the basal Glen Rose Formation, Texas.  The lowermost inter-
val of this zone is associated with the LAD of Nannoconus 
bucheri, which is in the upper Aptian Rhagodiscus angustus 
Zone (Ogg et al., 2016; Özkan-Altiner, 1999).  The uppermost 
Aptian correlation is also supported by the FO of Favusella 
washitensis in the Upper Tamaulipas Formation, Chapman core 
(Scott, 1990), which is above the LO of Nannoconus bucheri and 
below the FO of Colomiella mexicana.  The Favusella wash-
itensis–Nannoconus bucheri assemblage characterizes the upper-
most Aptian K–13 biozone in the Chihuahua Trough (Longoria, 
1984).  Longoria’s K–13 biozone is the interval between the FO 
of Ticinella bejaouaensis and the FO of Ticinella primula.  In the 
Gulf of Mexico, the LAD of Nannoconus bucheri is in the upper 
Aptian Nannoconus boletus Zone and stratigraphically below the 
lower Albian Colomiella Zone (McNulty, 1985).  In Middle East 
carbonates, Mesorbitolina texana ranges from upper Aptian to 
lower Albian (Simmons et al., 2000).  In the Mediterranean re-
gion, however, Mesorbitolina texana is reported to range into the 
middle Albian (Schroeder and Neumann, 1985).  

Carseyella walnutensis (Maync) Interval Range Zone (Figs. 
3.3–3.5); middle to lower upper Albian; FAD in the Fredericks-
burg Group, Texas, to FAD of Paracoskinolina coogani.  Among 
many associated species are the FOs of Coskinolinella daguini, 
Barkerina barkerina, and Cuneolina parva.  The genus Car-
seyella was recently defined to replace Dictyoconus 
(Schlagintweit, 2020). 

Paracoskinolina coogani (Scott) Total Range Zone (Figs. 
3.1–3.2); uppermost Albian (100.9 Ma); first appears in upper 
part of Washita Group in Central Texas associated with Strep-
talveolina mexicana and Dicyclina schlumbergeri.  

CORRELATION WITH                                          
OTHER GULF BIOZONES 

Barremian-Albian carbonate strata in the Gulf of Mexico 
region exhibit other microfossil groups in addition to benthic 
Foraminifera that aid in the subdivision and correlation of strati-
graphic sections.  Planktic foraminifers are relatively common in 
thin sections of pelagic facies, and zonal schemes have been pro-
posed for the Gulf region by Longoria (1984), McNulty (1985),  
and Bralower et al. (1999).  In the Tamaulipas Formation of 
Mexico the FOs of a succession of species correlate with 
Barremian to upper Albian:  Caucasella hoterivica, Barremian–
lower Aptian; Hedbergella similis, upper Barremian–lower Apti-
an; Hedbergella sigali and Globigerinelloides gottisi, lower Apti-
an; Globigerinelloides gottisi maridalensis, upper lower Aptian–
upper Aptian; Leupoldia cabri, lower upper Aptian; Glo-
bigerinelloides gottisi ferreolensis, upper Aptian; Globigerinel-
loides gottisi algerianus, Globigerinelloides gottisi barri,  and 
Planomalina cheniourensis, upper upper Aptian; Ticinella rob-
erti, lower Albian; Ticinella breggiensis, middle-upper Albian; 
Thalmanninella ticinensis, middle upper Albian; and Rotalipora 
apenninica, upper upper Albian–Cenomanian.  These zones have 
been further refined and taxonomy updated by data of free three-
dimensional specimens from DSDP and ODP cores (Huber and 
Leckie, 2011). 

Barremian to Albian calcareous nannofossils define zones 
readily identified throughout the Tethyan Realm.  A commonly 
used zonal scheme designated CC5–CC9 is based on FOs or LOs 
of coccoliths (Perch-Nielsen, 1985).  The somewhat larger cal-
careous nannoconids are relatively common in carbonate thin 
sections and readily seen at magnifications at about 500X.  Four 
zones span the Barremian to Albian (McNulty, 1985):  (1) the 
Barremian Nannoconus colomi IRZ from the FAD of Nannoco-
nus wassalli to the LAD of Nannoconus colomi; (2) the lower 
Aptian Nannoconus bucheri IRZ from the LAD of Nannoconus 
colomi to the LAD of Nannoconus bucheri; (3) the upper Aptian 
Nannoconus boletus TRZ; and (4) the Albian Nannoconus don-
natensis TRZ.  

The uppermost Aptian to lower Albian Colomiella Assem-
blage Zone characterizes the Lower Tamaulipas Formation in 
Mexico and Texas (Bonet, 1956; McNulty, 1985; Scott, 1990).  
Colomiellidae (Bonet, 1956) are calpionellids that consist of a 
single genus of calcareous microfossils composed of a vase-like 
lorica surmounted by a collar.  Three species, Colomiella mexi-
cana, Colomiella recta, and Colomiella tunesisana are common 
in lower Albian pelagic facies.  These species first appear very 
close to the base of the Albian and extend into the middle Albian.  
Colomiellid ranges are also recognized in Spain, France, and 
Tunisia.  

Barremian-Albian rudist biozones were defined for U.S. and 
Mexican carbonates (Scott and Filkorn, 2007; Scott and Hinote, 
2007; Scott et al., 2014).  The Huetamia buitronae Assemblage 
Zone characterizes the Cupido and Sligo formations in Texas and 
northern Mexico and the Comburindio Formation in Michoacán, 
Mexico (Scott and Hinote, 2007; Scott and Filkorn, 2007; Scott, 
2014).  The Choffatella decipiens and Palorbitolina lenticularis 
zones defined here correlate with this rudist zone.  These zones 
overlie the Berriasian–lower Aptian Nannoconus steinmanni 
Zone (McNulty, 1985).  The uppermost Aptian to lower Albian 
Coalcomana ramosa Interval Zone spans the Glen Rose For-
mation of Texas and the Mural Limestone of Arizona and corre-
lates with the Mesorbitolina texana Interval Zone.  The upper-
most lower to lowermost upper Albian Caprinuloidea Interval 
Zone characterizes the middle to lower part of the upper Albian 
Fredericksburg Group in Texas, the subsurface Stuart City For-
mation, and equivalent units in northern Mexico, and correlates 
with the Carseyella walnutensis Interval Zone.  The upper Albian 
Kimbleia Interval Zone ranges across the Devils River Formation 
in West Texas and El Abra Limestone in eastern Mexico and 
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correlates in part with the Paracoskinolinella coogani Range 
Zone.  

 
CORRELATION WITH                                         

BARREMIAN-ALBIAN STAGES 
The quantitative chronostratigraphic database, CRET17CS, 

was compiled in 2016–2018 based on numerical ages of 
GTS2016 (Ogg et al., 2016).  The numerical age calibrations of 
the Lower Cretaceous stages were revised as GTS2020 (Gale et 
al., 2021).  Both sets of ages are on Figures 1 and 2.  Candidate 
GSSP (Global Section and Stratotype Point) sections for both the 
Barremian and Aptian stages have been proposed, and the Albian 
stage GSSP is ratified at Pre-Guittard, Drôme, France (Gale et 
al., 2020).  Each section is incorporated in the CRET17CS data-
base, so that stage boundaries are defined consistently with the 
relevant criteria.  The numerical ages differ but the correlations 
of other taxa are reliable. 

The candidate section for the Barremian Stage is at Río Ar-
gos, Caravaca, Spain, at the FO of the ammonite Taveraidiscus 
hugii (Reboulet et al., 2018), which is a section in the 
CRET17CS database.  The numerical age of the base was revised 
from 130.8 Ma (Ogg et al., 2016) to 126.5 Ma is by correlation 
with Argentina (Gale et al., 2020).  

The candidate GSSP section for the Aptian Stage is at Gorgo 
a Cerbara, Italy (Gale et al., 2020), which is a section in the 
CRET17CS database.  Criteria of this boundary include Polarity 
Chron M0r and the FO of the ammonite Deshayesites oglanlensis 
(Ogg et al., 2016).  In the CRET17CS database, the numeric ages 
of M0r are 126.30 Ma and the FAD of D. oglanlensis is 126.30 
Ma.  The revised age of 121.4 Ma of M0r is interpolated from U–
Pb dates of an overlying bentonite in Polarity Chron M1r at Sval-
bard, Norway (Zhang et al., 2020).  

The Albian GSSP section is at Pre-Guittard, Drôme, France, 
and the boundary criterion in this section is the FO of Micro-
hedbergella miniglobularis, which is ~6.6 ft below the base of 
the Niveau Kilian marker bed. 

 
CONCLUSIONS 

Lower Cretaceous limestones representing shallow shelf, 
shelf margin and slope environments encircle the Gulf of Mexico 
and cap discreet isolated platforms in Mexico and Central Ameri-
ca; they were deposited in the Barremian to Albian stages, about 
130 to 100 Ma.  These carbonates have served as important hy-
drocarbon reservoirs in Mexico and the United States for nearly 
ninety years.  Exploration is challenging because of complex 
facies, diagenesis, burial history, and source rock proximity.  
New seismic and drilling technologies have created innovative 
exploration and exploitation possibilities.  These North and Cen-
tral American carbonate strata archive important oceanic signals 
such as carbon chemozones, oceanic anoxic events, and sea-level 
changes. 

Accurate and precise stratigraphic correlation is essential to 
unraveling potential carbonate reservoir facies.  One of the most 

common fossils in these carbonate strata are larger benthic fora-
minifers in addition to rudist bivalves, calcareous nannofossils, 
planktic foraminifers, and colomiellids.  Based on nearly seventy 
years of experience, biostratigraphic zonation of the Barremian, 
Aptian and Albian stages in the Gulf region is precisely defined 
by FADs and LADs of larger benthic foraminifers in thin sec-
tions.  Six benthic foraminiferal biozones are here defined by 
first occurrences or overlapping ranges in the Gulf of Mexico 
region of the United States, Mexico and Central America:  
Choffatella decipiens Interval Range Zone, Barremian; Palorbi-
tolina lenticularis Total Range Zone, lower Aptian; Paracos-
kinolina sunnilandensis Interval Range Zone, lower to upper 
Aptian; Mesorbitolina texana Interval Range Zone, uppermost 
Aptian to lower Albian; Carseyella walnutensis Interval Range 
Zone, middle to lower upper Albian; Paracoskinolina coogani 
Total Range Zone, uppermost Albian.  
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