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EXTENDED ABSTRACT

Justiss Oil Company, Inc. granted us access to the LA Central IPNH No. 2 well con-
ventional core from Olla Field, LaSalle Parish, Louisiana (Figs. 1 and 2). The 120 ft long
core contains Upper Cretaceous carbonate, Paleogene Midway Shale and, in between, a
complete section of the Cretaceous/Paleogene Boundary Deposit (KPBD) (Sanford et al.,
2016).

The KPBD was “accidently” cored with this well when Justiss Oil selected a coring
point interpolated from Paleogene shale/Cretaceous chalk contact depths encountered in
other wells in the area. They did not recognize that the top of the chalk has one-half
mile wavelength, 50 ft high tsunami ripples resulting from the Chicxulub Impact
(Egedahl, 2012; Egedahl et al., 2012; Strong, 2013; Strong and Kinsland, 2014). Seren-
dipitously, the IPNH No. 2 well is located in a trough of the tsunami ripple surface and
the coring point, predicted from wells higher on the ripples resulted in coring about 30 ft
of Paleogene Midway Shale above the desired initial coring horizon at the top of the Cre-
taceous chalk.

We have performed several analyses on this core including: Visual inch by inch
core description (Shellhouse, 2017), description of 35 thin-sections from chosen locations
(Shellhouse, 2017 [note that comparisons of his descriptions and other analyses lead to
the conclusion that in his figure 26 sample locations 26, 31, and 32 were erroneously lo-
cated on the core image and erroneously tabulated in the table of his Appendix A when
thin-section samples were cut—samples 28 through 31 should be 2 in. samples on 2 in.
centers spanning the obvious transition in lithofacies]), 10% HCI acid dissolution studies
of the thin-section blanks (Kinsland et al., 2017; Muchiri, 2018), XRF (X-ray fluores-
cence) and XRD (X-ray diffraction) of the insoluble residue from the thin-section blanks
(Frederick, 2018), and scanning electron microscope (SEM) imaging of portions of se-
lected thin-section blanks (Muchiri, 2018). We have XRF data collected by University of
Texas at Austin personnel at the Austin core repository, well logs (gamma ray, spontane-
ous potential, resistivity and FMI [Formation Micro Imager]).

Originally published as: Kinsland, G. L., K. Shellhouse, E. Muchiri, and F. Frederick, 2018, Analyses and interpretations of
a conventional core from central Louisiana, which contains deposits resulting from the effects of the Chicxulub Impact:
Gulf Coast Association of Geological Societies Transactions, v. 68, p. 597-604.
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Location of our core and of marine core off of the Blake Nose relative to the Chicxulub Impact




(Egedahl, 2012)
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PERCENTAGE WEIGHT OF INSOLUBLE CONSTITUENTS ACROSS K/Pg BOUNDARY
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Figure 21. A cross-plot showing percentage weight of insoluble components of the Justiss LA Central IPNH

No. 2 well-core with depth; * represents the K/Pg boundary and the upper hardground and, *represents
the lower hardground

(Muchiri, 2018; Kinsland et al., 2017b)
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This slide and the next three slides are from Forrest Frederick’s thesis work in progress.

(Frederick, 2018)




All Samples

The pre-dissolution 10% HCl XEF data and the post-dissolution 10% HCl XEF data are
significantlv different in the amount and tvpes of elements present within each sample.
Generally, the pre-dissolution samples contain elements such as Na, Y, and Ga which are
not found in the post-dissolution samples. This occurs because the XEF machine used to
detect the elemental abundances in the post-dissolution samples is more limited in its
elemental detection range and cannot measure these elements.

Contrastingly, the post-dissolution samples contain elements such as Pd, Ag. Cd, Au_Bi,
Sc, Sn, Sb, and Hg, which most likely result from the removal CaCO3, which is dominant

in the pre-dissolution samples and acts as a mask for all of these elements.

More research is currently being conducted on all core samples using XFE.I analvsis

which will give further insights into the mineralogv of the core.




Sample 30
Sample 30 originates from the upper (K/Pg) boundarv section currentlv identified as the Fall Back Ejecta
Material Zone, and its deposition is directlv affected bv the Chicxulub Impact.
This sample is located directlv at the K-Pg boundary within the core and has a heterogeneous particle size
makeup and contains a mixture of various elements suggesting that the depositional environment was
profoundlv affected bv the Chicxulub Impact as the Fall Back Ejecta particles collided with each other and
settled in the sediment laver.
Some elements such as Hg and Au appearing onlv in sample 30 and nowhere else within the samples taken
from the core, making the sample distinct from anv other sample within the core.
Ba is present in substantial amounts in sample 30, which upon investigation proved to occur from the
outside contamination of drilling mud

This sample also contains some elements associated with bolide impacts such as Ni, Cu, Mn, Zn_ Zr. As, Se,

Nb, and U which have significant increases in elemental abundances compared with surrounding samples.

These elements were also some of the trace elements found in the K-Pg boundary clav in Denmark (Alvarez
et al., 1980). This suggests that an impact such as Chicxulub could have affected the depositional

environment in which this sample was taken.




Sample 16

Sample 16 originates from the lower boundary section currentlv identified as the Pre-Impact Material Zone in
which the Chicxulub Impact had no effects on the depositional environment at this stage of the core.

This sample also is heterogeneous and is considered to be part of a hard ground depositional environment due
to evidence of borings in and around the sample.

The hard ground is hvpothesized to have been in place prior to the Chicxulub Impact and is considered to be
a depositional environment in which a significant reduction in the deposition of sediment occurred. One
hvpothesis for this reduction in sedimentation is the presence of bottom ocean currents which swept awayv
sediment during the Late Cretaceous.

Just below sample 16 is a sizeable gamma-rav spike which is attributed to a sudden spike in U of 138 ppm
(Pre-Dissolution 10% HCI) as compared with much lower values of less than 30 ppm in the surrounding
samples.

Sample 16 also has significant increases in Zr and Cr post-dissolution. More studv will need to be done on

this to determine why these elemental abundances increase.

This sample also contains a significant increase in Ba which is attributed to mud contamination from drilling.
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6) Paleogene terrestrially sourced clays of the Midway Shale

5) less-well-developed hardground, “upper pebble layer” of
Kinsland et al. (2017), with some material
ballistically/atmospherically transported from the Chicxulub
Impact site.

4) Modification by tsunamis from the impact

3) mass transport deposit mobilized by the Chicxulub Impact
earthquake (Sanford et al., 2016), at least at this locality, material
from up-dip was transported over intact hardground. The mass
transport/hardground contact is then the K/Pg boundary (Molina
et al., 2006),

2) a well-developed marine hardground, that this “lower pebble
clast zone” of Kinsland et al. (2017) is a hardground was
originally suggested by Galloway (2017)

1) relatively undisturbed Upper Cretaceous coccolith rich chalk
(marl) Kinsland et al. (2017), Muchiri (2018), Shellhouse (2017)
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