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ABSTRACT

The Cotton Valley Group is an Upper Jurassic to Lower Cretaceous sequence of
sandstone, shale, and limestone that underlies much of the northern Gulf of Mexico
coastal plain from eastern Texas to Alabama. A great many wells have been drilled into
this tight gas formation over the years. With the advent of new technology, wells can
benefit both from improvements in horizontal well-drilling efficiency and horizontal-
well stimulation efficiencies. New horizontal wells are currently being drilled into Cot-
ton Valley sands for gas, oil, and natural gas liquids. Lateral lengths, stimulation vol-
umes, and production results continue to increase substantially.

A great deal of information has been gathered from vertical wells in many fields
that can yield critical insight into the evaluation of horizontal well placement. This pa-
per will demonstrate the use of legacy data in the evaluation of Cotton Valley field areas
for the placement of horizontal wells into the more productive Cotton Valley intervals.

The U.S. Geological Survey (USGS) has stated: “...the difficulties with wireline logs
in tight Cotton Valley sandstones is that logs are of limited value in differentiating be-
tween gas-productive and wet intervals, and therefore in identifying gas-water contacts
on the flanks of Cotton Valley fields.”

Major factors contributing to the abnormally low resistivities in tight Cotton Valley
sandstones include bound water (micro-porosity) associated with pore-filling clays or
clay grain-coatings and conductive authigenic minerals such as pyrite and ankerite. By
using conventional core and rotary core plugs, magnetic resonance logs, and after-
stimulation production logs on vertical wells, it is possible to optimize targets for hori-
zontal well production and overcome a number of these problems.

Originally published as: Markley, M. E., and I. M. Byram, 2018, Using legacy data from cores, open hole logs, and produc-
tion logs to optimize the placement of horizontal well targets in the Cotton Valley Formation of North Louisiana and East
Texas: Gulf Coast Association of Geological Societies Transactions, v. 68, p. 309-338.
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Cotton Valley Play Area and Vertical Section of Field Study Area
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ssection and produced 3-Bcf from a 3250ft
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Linam 23-1H TVD Cum 2.03 Bcf & 3.65 Bcf EUR (No Cutoff) 3000ft lateral->2008 Fracking
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Fracturing formations with non-existent boundaries results in circular
fracs where height is the same as wing length. In a modern horizontal
well, many perf clusters along the wellbore allow many small fractures
to break-up and shatter the formation more completely along the
borehole in the target formation where the reserves are.

In current horizontal wells, with newer models and
technology the complexity of the fracturing is still vastly
under-estimated and with 50 stages rather than 6 stages
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Pore System

Core porosity = 9.3%. Core permeability = 0.007 md.
The rock has low effective porosity and permeability.
‘ ) ’ Microporosity is developed in association with the
Lower CV 10,025 ft. & [T dispersed shale groundmass and, to a lesser extent,

: it~ calcite cement within cleaner patches of rock.

High Surface
area clays
creating

| microporosity

Plate 30B - High magnification view illustrating the
occlusion of intergranular space by shale. Framework
grains are angular to subangular in shape and consist
predominantly of monocrystalline quartz (C-4).

Intergranular space is filled by a mixture of illite and
illite-smectite clay (D-9). Some pore space is also filled
L' i by chlorite or small amounts of kaolinite. Pyrite (H-4)
_ :.')',,r I LN oceurs in small quantities. Poro§ity is restricted to
micropores (pores << 5 um in diameter) developed
within the shaly groundmass. While contributing to
fluid storage, the micropore structure is not expected to

1 o) 3 4 5 6 7 ] 9 10 11 12 13 14 produce fluids at any appreciable rate. This is non-

reservoir rock unless naturally fractured.
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Magnetic Resonance Porosity Definitions
- T2Ditbuon
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—
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BVIRR—Magnetic Resonance

Swirr = Equation 1> Porosity ONLY- No Resistivity
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Upper CV 9,327 ft.

McFerren Interval

Pore System

Core porosity = 11.5%. Core permeability = 0.043 md.
While porous, the rock has low permeability, a function

of

extensive microporosity development associated with

3

9

10 11

12 13

clay cements|(plate 14A, D-12). The rock has relatively
| little intergranular macroporosity or secondary porosity.

Plate 14B - High magnification view illustrating the
small size of remnant intergranular pores (C-9) and
extensive development of microporosity in association
with pore lining clays (E-9). The clay cement consists
largely of illite and illite-smectite. The illite-smectite
contains only 20% expandable smectite layers. Due to
the limited expandability of the clay, clay swelling is not

| expected to be a problem. The rock is essentially devoid

of migratable clay fines and particle migration effects
are not expected to be significant. The rock contains
small amounts of chlorite clay cement, thus, rendering
the formation somewhat susceptible to damage from
contact with HCl acid and oxygenated fluids (minor).

The primary formation damage mechanism associated
with clay cementation is fluid imbibition and solids
blockage associated with the micropore structure of the
rock and very high clay surface areas. Clay cementation

and bridging of pore throat openings are partially
responsible for low permeability and will reduce fluid
production rates.




Lieber 30-3 With Rotary SWC Porosity and Log Porosities
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Diagenetic Clays do fill pores, cover grains and preserve porosity in most Cotton Valley wells in various
intervals

Lieber 30-3 SWC Porosity vs GR in Cotton Lieber 30-3 Rotary Cores- Perm vs GR in
Valley Sands Cotton Valley
—GR -@-Core Porosity -e-GammaRay @ Rotary Core Perm
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Comments & Summary

A large data set with good well logs including magnetic resonance, core data, after
frac gamma rays and production logs was used in the study

All wells studied have some zones of higher porosity with higher gammaray _
indicating porosity preservation from clays (mostly micro-porosity from pore f||||n_?
and some grain covering clays). These higher porosities do not preserve permeability

The addition of magnetic resonance data quantifies micro-porosity and allows a
computation of moveable water zones which should be avoided

Most stimulations (frac stages) in the UJ)per Cotton Valley were ineffective (meaning
less than 50% of perf clusters produced)

Attempting to stimulate widely spaced 4, 5 and 6 perf-cluster zones in a vertical well
were unsuccessful in the upper Cotton Valley

No Upper Cotton Valley zones have been efficiently drained in these wells
Depletion is not a problem in the Upper Cotton Valley
In this area the Cotton Valley Turner interval is not productive in many wells

Horizontal wells with current technology should increase cumulative production
substantially





